

``

IDENTIFICATION AND CLASSIFICATION OF PLAYER TYPES IN MASSIVE

MULTIPLAYER ONLINE GAMES USING AVATAR BEHAVIOR

DISSERTATION

Earl M. Bednar, Major, USAF

AFIT/DS/ENS/11-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 i

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

 ii

AFIT/DS/ENS/11-01

IDENTIFICATION AND CLASSIFICATION OF PLAYER TYPES IN MASSIVE

MULTIPLAYER ONLINE GAMES USING AVATAR BEHAVIOR

DISSERTATION

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Operations Research

Earl M. Bednar, B.S., M.S.

Major, USAF

Aug 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT /DS/ENS/11-0 1

IDENTlFJCA TION AND CLASSIFTCA T TON OF PLAYER TYPES IN MASSIVE

MUL TIPLAYER ONLINE GAMES USING AVATAR BEHAVIOR

Earl M. Bednar, B.S., M.S.
Major, USAF

Approved:

(Chairman)

'-~t:iv/=-1-<;
Kenneth W. Bauer, Jr. , PhD (Member)

f!-1._.1 (L &L~
Richard Raines, PhD (Member)

Accepted:

/7 A,Lf(;- 2C·/j

Date

_·rvt _ _ vl_-r-k-c _ _ ~ _ ______ 25 A~ 6' z..o l t
M. U. Thomas, PhD Date
Dean, Graduate School of
Engineering and Management

ii i

 iv

AFIT/DS/ENS/11-01
Abstract

The purpose of our research is to develop an improved methodology for

classifying players (identifying deviant players such as terrorists) through multivariate

analysis of data from avatar characteristics and behaviors in massive multiplayer online

games (MMOGs). To build our classification models, we developed three significant

enhancements to the standard Generalized Regression Neural Networks (GRNN)

modeling method. The first enhancement is a feature selection technique based on

GRNNs, allowing us to tailor our feature set to be best modeled by GRNNs. The second

enhancement is a hybrid GRNN which allows each feature to be modeled by a GRNN

tailored to its data type. The third enhancement is a spread estimation technique for large

data sets that is faster than exhaustive searches, yet more accurate than a standard

heuristic. We applied our new techniques to a set of data from the MMOG, Everquest II,

to identify deviant players (‘gold farmers’). The identification of gold farmers is similar

to labeling terrorists in that the ratio of gold farmer to standard player is extremely small,

and the in-game behaviors for a gold farmer have detectable differences from a standard

player. Our results were promising given the difficulty of the classification process,

primarily the extremely unbalanced data set with a small number of observations from

the class of interest. As a screening tool our method identifies a significantly reduced set

of avatars and associated players with a much improved probability of containing a

number of players displaying deviant behaviors. With further efforts at improving

computing efficiencies to allow inclusion of additional features and observations with our

framework, we expect even better results.

 v

Table of Contents

Page

Abstract .. iv

List of Figures ... vii

List of Tables ... ix

I. Introduction ... 1

II. Background .. 7

2.1. Literature Review on Player Classification .. 7
2.2. Overview of Artificial Neural Networks for Classification 14

2.2.1. Artificial Neural Networks ... 16
2.2.2. Preparing Data for Generalized Regression Neural Networks 24
2.2.3. Artificial Neural Network Performance Measures .. 26

2.3. Summary ... 31

III. Feature Selection for Player Classification ... 32

3.1. Review of Select Feature Selection Techniques... 33
3.2. New Feature Selection Technique .. 35

3.2.1. Technique Overview .. 36
3.2.2. Gradient of Generalized Regression Neural Networks 40

3.3. University of Wisconsin Breast Cancer Data Example .. 45
3.3.1. Data description ... 45
3.3.2. Analysis .. 47

3.4. Conclusion .. 50

IV. Hybrid Generalized Regression Neural Network for Classification 52

4.1. Background ... 52
4.2. Methodology ... 53
4.3. Bot Traffic Example ... 54

4.3.1. Original TCP Analysis ... 57
4.3.2. Initial TCP Analysis with Artificial Neural Networks 61
4.3.3. Second TCP Analysis with Artificial Neural Networks 64
4.3.4. Conclusion .. 68

4.4. Summary ... 69

V. Spread Estimation for Classification with Large Data Sets ... 70

5.1. Background ... 71
5.2. Methodology ... 73
5.3. Multiple Data Sets Comparisons .. 73

5.3.1. Data Overview ... 74

 vi

5.3.2. Analysis .. 75
5.3.3. Conclusion .. 78

5.4. Summary ... 79

VI. Analysis of ‘Gold Farmers’ in EverQuest II Using Feature Selection and Hybrid
Generalized Regression Neural Networks .. 80

6.1. Data Description ... 81
6.2. Issues Relating to Large Data Set Sets ... 83
6.3. Analysis .. 86
6.4. Conclusion .. 977

VII. Summary Research Contributions and Future Research ... 100

7.1. Research Contributions .. 100
7.1.1. Feature Selection Using Generalized Regression Neural Networks 100
7.1.2. Hybrid Generalized Regression Neural Network .. 101
7.1.3. Spread Estimation Technique for Large Data Sets .. 102
7.1.4. Develop Framework to Classify Players by Predetermined Categories Using
Information Obtained Through In-Game Behaviors .. 103

7.2. Recommendations for Future Work ... 103
7.2.1. Develop Tool to Identify In-Game Player Associations and Movement Patterns
 .. 104
7.2.2. Feature Selection Improvements Using Generalized Regression Neural
Networks .. 104
7.2.3. Processing Improvements for Hybrid Generalized Regression Neural Networks
 .. 105
7.2.4. Spread Estimation for Large Data Sets .. 105
7.2.5. Further Develop Framework to Classify Players by Predetermined Categories
Using Information Obtained Through Observed Behaviors 106

Appendix A: List of Acronyms ... 108

Appendix B: Binary Receiver Operating Characteristic Curves for EQ2 Analysis 109

Appendix C: Features Reduced vs. F-Measure for EQ2 Analysis 116

Bibliography ... 121

 vii

List of Figures

Page

Figure 1: “On the Internet, nobody knows you’re a dog” (Steiner, 1993) 2

Figure 2: Flow Chart for Typical Modeling Using Generalized Regression Neural

Networks .. 5

Figure 3: Flow Chart for Modeling using Hybrid Generalized Regression Neural Network

with Feature Reduction .. 5

Figure 4: Bartle Personality Interest Graph (Bartle, 1996) ... 8

Figure 5: Example Feed Forward Neural Network ... 17

Figure 6: Example Radial Basis Function Neural Networks .. 18

Figure 7: Two Category Generalized Regression Neural Network 19

Figure 8: Contour Plots of a Parzen Windows Distribution ... 20

Figure 9: Confusion Matrix .. 27

Figure 10: Confusion Matrix Notional Example .. 27

Figure 11: Contour plot of F-Measure related to recall and precision 30

Figure 12: Receiver Operating Characteristic Curve Notional Example 31

Figure 13: Plot of apparent classification accuracies after stepwise feature reduction 34

Figure 14: Flow Chart Depicting Generalized Regression Neural Network Feature

Reduction for Numeric and Binary Data Types ... 36

Figure 15: Plot of apparent classification accuracies versus number of features removed

for University of Wisconsin Breast Cancer Data ... 49

Figure 16: Flow Chart of the Hybrid Generalized Regression Neural Network 54

 viii

Figure 17: Lines from a Transmission Control Protocol Trace .. 55

Figure 18: Histogram of client response times shorter than 0.5 seconds (Chen, 2009) ... 58

Figure 19: Evaluation results for the proposed decision schemes with different input size

(Chen, 2009) ... 59

Figure 20: Evaluation results for the integrated schemes (Chen, 2009) 60

Figure 21: ROC curve of Hybrid GRNN for Bot detection .. 64

Figure 22: Flow Chart of Faster Spread Finding For Extremely Large Data Sets 73

Figure 23: ROC Curves with F-Measure for EQ2-B1 Feature Reduction Sets. 88

Figure 24: Plot of Retained Features vs. F-Measure for EQ2-B1 89

Figure 25: Plot of Retained Features vs. F-Measure for Numeric Data Set 90

Figure 26: ROC Curves with F-Measure for Final Results…….………………………..92

Figure 27: ROC Curves for EQ2-B1 feature reduction sets. .. 109

Figure 28: ROC Curves for EQ2-B2 feature reduction sets. .. 110

Figure 29: ROC Curves for EQ2-B3 feature reduction sets. .. 111

Figure 30: ROC Curves for EQ2-B4 feature reduction sets. .. 1144

Figure 31: ROC Curves for EQ2-B5 feature reduction sets. .. 115

Figure 32: Plot of Retained features vs. F-Measure for Numeric Data Set 116

Figure 33: Plot of Retained features vs. F-Measure for EQ2-1 Binary Data Set 117

Figure 34: Plot of Retained features vs. F-Measure for EQ2-2 Binary Data Set 118

Figure 35: Plot of Retained features vs. F-Measure for EQ2-3 Binary Data Set 118

Figure 36: Plot of Retained features vs. F-Measure for EQ2-4 Binary Data Set 119

Figure 37: Plot of Retained features vs. F-Measure for EQ2-5 Binary Data Set 120

 ix

List of Tables

Page

Table 1: Summary from 28 medical studies (Sargent, 2001) ... 15

Table 2: Alternate Parzen Windows Kernels from (Specht, 1990) 21

Table 3: Feature Overview of Breast Cytology Data .. 46

Table 4: Summary of Breast Cytology Feature Selection .. 48

Table 5: Transmission Control Protocol Traces Summary (Chen, 2009) 56

Table 6: Feature Overview of Initial Transmission Control Protocol Data from Ragnarok

Online ... 62

Table 7: Hybrid confusion matrices for Bot detection .. 63

Table 8: Comparative Confusion Matrices for Bot Detection .. 64

Table 9: Feature Overview of Second Transmission Control Protocol Data from

Ragnarok Online .. 65

Table 10: Hybrid Confusion Matrices for Bot Detection ... 66

Table 11: Comparative Confusion Matrices for Bot Detection .. 67

Table 12: Times for Creating Confusion Matrices for Bot Detection 68

Table 13: EQ2 data sets with the number of features and observations 75

Table 14: Spreads by Collection Type and Data Set .. 76

Table 15: Spread Collection Times by Collection Type and Data Set 76

Table 16: Spread Collection Times Relative to Exhaustive Search Collection Time by

Collection Type and Data Set .. 77

Table 17: Spread collection times relative to normal collection time along with spread

values .. 77

 x

Table 18: Feature Overview of the 1% Sample Data Collected From EverQuest II 82

Table 19: Binary Feature Reduction EQ2-B1 ... 89

Table 20: Summary of Feature Reduction for EQ2 Binary Data 90

Table 21: Numeric Feature Reduction .. 91

Table 22: Results from Convex Combination .. 92

Table 23: Model Parameters ... 93

Table 24: Final Model Confusion Matrix ... 93

Table 25: Retained Features .. 95

Table 26: 500/500 Model Resulting Confusion Matrix……………………………….…96

Table 27: 5% Model Resulting Confusion Matrix .. 96

Table 28: Numeric Feature Reduction .. 116

Table 29: Binary Feature Reduction EQ2-B1 ... 117

Table 30: Binary Feature Reduction EQ2-B2 ... 117

Table 31: Binary Feature Reduction EQ2-B3 ... 118

Table 32: Binary Feature Reduction EQ2-B4 ... 119

Table 33: Binary Feature Reduction EQ2-B5 ... 120

 1

IDENTIFICATION AND CLASSIFICATION OF PLAYER TYPES IN MASSIVE
MULTIPLAYER ONLINE GAMES USING AVATAR BEHAVIOR

I. Introduction

Playing massive multiplayer online games (MMOGs) is one of the most popular

activities in the world today. A MMOG is “a type of computer game that enables

hundreds or thousands of players to simultaneously interact in a game world which they

are connected to via the Internet (Game Entertainment Europe, 2008).” Millions of

people around the world play MMOGs, one of the most successful games, World of

Warcraft (WoW), claims over 12M players (Blizzard Entertainment, 2010). Players can

shop, talk, stage combat, and explore with people they may have never met in person. To

access these game worlds, a player creates a computer generated character called an

avatar, a virtual representation of the player. These avatars are developed and controlled

by the player. The players then use these avatars to interact with the virtual world and

other avatars.

It is commonly believed that using these avatars provides anonymity, as seen in

Figure 1, a comic from the New Yorker (Steiner, 1993). This anonymity can be a

blessing and a curse. It is a blessing in that it allows people to interact without worry of

being judged on personal appearance, race, or handicap. It also affords the freedom to act

as you wish knowing you do not need to worry about how you are perceived; you can

always delete an avatar and create a new one to start over. It is a curse in that a side

effect of this anonymity and the ease of communication afforded by MMOGs is they

 2

have become virtual hot beds of criminal activity which includes trafficking in credit card

numbers (The City Paper, 2008), cheating (Laurens, 2007; Yan, 2002), espionage (BBC

News, 2009), and griefing (Lin, 2005), which can be seen as a form of terrorism. It is

possible, that monitoring avatar griefing behaviors in MMOGs could lend insight into

understanding real life terrorists, much like epidemiologists who are attempting to use

WoW data to study people’s behavior during epidemic outbreaks (Balicer, 2007).

Similarly, the deputy director of the Center for Terrorism and Intelligence Studies states

that he believes such a game could provide ways to study how terrorist cells form and

operate. He believes that the use of MMOG avatars add a realistic dimension to study

terrorists’ tactical decision-making and may generate more useful information than a

standard simulation (Their, 2008). However, before we can study their actions, we need

to find the people we wish to study within the MMOG who rely on the anonymity.

Figure 1: “On the Internet, nobody knows you’re a dog” (Steiner, 1993)

 3

This research focuses on chipping away at this avatar anonymity. We identify

behaviors and characteristics from avatars and use them to build models to classify

players. We believe that since there is someone controlling the avatar, the avatar will

display specific characteristics that can be used to identify the player behind the avatar.

This kind of information can be used by game companies to identify what kind of players

play their games and could aid them in developing more content for those players or

developing additional content to bring in players. This kind of information can also be

used to identify deviant behaviors such as ‘gold farming.’ Gold farming refers to the

practice of trading virtual in-game resources such as currency, items, and avatars for real-

world currency. Gold farming is considered a deviant behavior for three main reasons

(Keegan, 2010). First, in game economies are carefully developed by the game

developers and gold farmers upset the balance of these economies. Second, gold farmers

activities often adversely affect the playing experience of other players. Third, gold

farming assigns a real-world value to virtual property bringing with it questions about

property rights and taxation along with criminal activities such as money laundering.

MMOG information can also be used to identify criminals and criminal activities,

ranging from information exchanges to terrorist activities. The identification of gold

farmers is similar to labeling terrorists in that the ratio of gold farmer to standard player is

extremely small, and the in-game behaviors for a gold farmer have detectable differences

from a standard player. This research can be not only applied to the Department of

Defense (DoD) problem of identifying terrorists in online games, but onto other

monitored systems such as video surveillance of a public area. Similarities can be drawn

between video surveillance and avatar observation within an MMOG to include

 4

movement path, appearance, race, gender, and player interaction. These observations

represent behavioral features which cannot easily be modeled as a linear combination of

independent features, leading us to consider this data as non-linear.

Since we believe the MMOG data would be best modeled with non-linear

techniques, we employ Artificial Neural Networks (ANNs), based on their proven ability

to model non-linear data (Loeffelholz, 2009). Generalized Regression Neural Networks

(GRNNs) are the primary tools we use to develop the player classification models.

Specifically, our approach begins with all available features in a data set and then builds a

GRNN to reduce the number of features used for classification. An enhancement with

our approach, handles multiple data types with tailored feature reduction techniques,

hence our label of hybrid GRNN. As an example, avatar behavior data consists of

numeric, binary, and categorical data. The numeric and binary data are readily imported

into mathematical models, but categorical data needs to be converted into a numeric

form. Examples of categorical data are gender, hair color, and avatar profession.

Converting categorical data with more than two options such as hair color (red, blue,

green, and brown) into numeric form is done by taking each feature within the categorical

feature and creating a new binary feature. For our hair color case, we would then have

red, blue, green and brown as binary features. Converting categorical data with only two

options such as gender (male and female) into numeric form can be done by assigning

each value to a binary switch. For our gender case, we would have the gender feature

with 0 equaling male, and 1 equaling female. Figure 2 is a flow chart showing the typical

way to model data using a GRNN while Figure 3 illustrates our hybrid GRNN approach,

including a feature reduction step, used in this research.

 5

Figure 2: Flow Chart for Typical Modeling Using Generalized Regression Neural
Networks

Figure 3: Flow Chart for Modeling using Hybrid Generalized Regression Neural
Network with Feature Reduction

The first chapter of this document is an introduction to give the reader a brief

overview of the research. The second chapter focuses on the research background which

covers a literature review and an overview of ANNs. The third chapter gives a detailed

 6

description of our feature selection method based on GRNNs and includes an example

using University of Wisconsin Breast Cancer Data (Breast Cancer Wisconsin (Original)

Data Set, 1992). The fourth chapter covers our hybrid GRNN developed to handle

multiple data types and includes an example using data derived from MMOG packet

communication data (Chen, 2009). The fifth chapter discusses issues in parameter

selection for the GRNN when applied to large data sets and includes a comparison of

different methods and data sizes. The sixth chapter is a full analysis using the method

outlined in Figure 3 on data obtained from the MMOG EverQuest II with a focus in

identifying the criminal activity of gold farming. The seventh and final chapter is a

summary of this research and covers the research contributions.

 7

II. Background

This chapter presents a literature review on player classification and discusses

Artificial Neural Network (ANN) background and use for classification. The player

classification section covers a variety of approaches used to identify and classify players

in many different Massive Multiplayer Online Games (MMOGs). The ANN section

covers the Feed Forward Neural Network (FFNN) and the Generalized Regression

Neural Network (GRNN) as well as techniques to compare the effectiveness of ANNs.

2.1. Literature Review on Player Classification

Classifying a player in an online game is a difficult challenge. The limited

combination of avatar appearances and the limited number of actions shroud the

individuality of the player. The generic nature of the avatar, combined with the ability to

alter ones responses and actions with limited recourse, make classifying the player behind

the avatar difficult. Researchers are attempting to identify unique behaviors associated

with a player controlling the avatar. Some of the observable information used to identify

these unique behaviors are network activity, action sequences, chat, movement, and

avatar location within the game. A goal for researchers is to develop methods to classify

players using the observable avatar characteristics and behaviors.

Noted as one of the earliest works in player classification, in 1996 Richard Bartle

developed four personality types to classify Multi User Domain (MUD) players. As seen

in (Bartle, 1996), the four Bartle personality types are Socializer, Explorer, Achiever, and

Killer. Using the interest graph in Figure 4, we can see that Socializers value interacting

 8

with other players. This generally means they would prefer talking to others and getting

to know them, rather than competing against them. They tend to use the game worlds as

a setting, and other people are reasons to be there. Explorers are interested in interacting

with the world. They enjoy traveling through the virtual environment and discovering

new areas, creatures and adventures. They find value in other players as a way to share

their knowledge of the game, but other players are not essential to game play. Achievers

value acting on the world. This means their goal is to master the game. Knowledge

about the game only has value if it leads to successfully completing some part of the

game. They also find other players lend to authenticity, but are not necessarily important.

Killers enjoy acting on other players. They are highly competitive and find that

knowledge about the world is not important unless it gives them an advantage over other

players. They are usually focused on perfecting skills and techniques that are applied

when competing against other players.

Figure 4: Bartle Personality Interest Graph (Bartle, 1996)

 9

Although the Bartle personality types were developed for MUDs, they also

encompass MMOG players. There is even a test, developed by Erwin Andreason,

currently available to be taken to determine a player’s personality type (GamerDNA,

2009). The Bartle’s Personality Test is used as a fun way for players to classify

themselves. Even though it is labeled for entertainment purposes only, the gaming

community feels that the results are representative of their individual gaming

personalities.

Dr. Ruck Thawonmas, a professor at Ritsemeikan University in Japan, has

worked a lot with player classification. Thawonmas et al. researched classification of

players’ types in order to identify player behaviors and assist game developers in

developing content to fulfill player demands. For their research, they use MMOG

simulators Zereal and Simac and MMOGs The Ice and Angels Love. Zereal is “a MMOG

simulation platform that provides a (coarse) simulation of active players that can be used

to test various approaches for player usage logging (Tveit, 2003).” It was developed at

the Norwegian University of Science and Technology. Zereal uses Markov models to

simulate player actions. Simac is a MMOG simulator designed to simulate player types

and actions not available in Zereal. The Ice is an educational game developed at the

Intelligent Computer Entertainment Lab at Ritsemeikan University in Japan. Angel’s

Love is a commercial MMOG. It is free to play and initially was released in Taiwan. A

Japanese version is also available.

Thawonmas, Ho, and Matsumoto use logs of action sequences and item sequences

from Zereal to classify a player’s Bartle personality type (Thawonmas, 2005a). Action

and item sequences are aggregated into the probability of specific actions for each player

 10

type. These probability strings are classified using Adaptive Memory-Based Reasoning

(AMBR) which performs majority voting among the k nearest neighbors and

incrementing k if ties occur. Their results show around a 92% classification rate using

three different types of Zereal agents.

Thawonmas and Ho use an Action Transition Probability Matrix (ATPM) and

Klullback Liebler Entropy (KLE) to classify action logs from Simac (Thawonmas,

2007a). KLE is a distance measure used for comparing similarity between probability

distributions. Each log is parsed into an ATPM to identify the probability from moving

from one action state to another. Then a training set is used to classify a Bartle

personality type with the KLE nearest neighbors. Their results show around a 95%

classification rate across all four Bartle personality types.

Thawonmas and Hata use symbol sub-sequences and KeyGraph to analyze

players’ action behaviors (Thawonmas, 2005b). KeyGraph is “an algorithm for

extracting keywords representing the asserted main point in a document, without relying

on external devices such as natural language processing tools or a document corpus

(Ohsawa, 1998).” KeyGraph uses indexing based on information within the documents

such as term frequency and location (Ohsawa, 1998). Thawonmas and Hata identify an

algorithm that aggregates frequent sub-sequences of consecutive actions. Then,

KeyGraph is used to identify the co-occurrence of actions from the reduced sequence.

Unknown KeyGraphs are then compared to known KeyGraphs by observation. Using

Zereal, they are able to achieve a classification rate of 90% using three types of simulated

agents.

 11

Thawonmas and Matsumoto use Hidden Markov Models (HMMs) of player

action sequences to classify players of MMOGs (Matsumoto, 2004; Thawonmas, 2005c).

A set of training action sequences is turned into a training set of HMMs. Then, using the

Viterbi algorithm, unknown action sequences are assigned to a training HMM with the

highest log probability. Using Zereal, they are able to classify specific simulated agent

types with a success rate between 80% and 100% depending on the agent type.

Thawonmas, Kurashige, Iizuka, and Kantardzic use Self-Organizing Maps

(SOMs) to cluster online-game users based on their player trails (Thawonmas, 2006).

They simulate player trails using a 2D map with a 600x600 grid, derived from an online

game map. They then use a SOM to cluster users based on their movement patterns.

They conclude that a SOM was able to be generated from online-game trails and could

successfully cluster users based on these trails. Since this was a proof of concept, no

classification performance experiment has been done.

Thawonmas and Iizuka use player action logs from The ICE to apply Classical

Multidimensional Scaling (CMDS) and KeyGraph to analyze players’ action behaviors

(Thawonmas, 2008). CMDS is used to cluster the logs and identify players with similar

logs. CMDS is a technique for mapping pair-wise relationships to coordinates. Then,

KeyGraph is used to identify the co-occurrence of actions. Using the KeyGraph data

each cluster is related to a Bartle personality type. This is done by identifying actions

that relate to each Bartle type. They conclude they were successful in identifying three

clusters from The ICE game logs, which matched the Bartle Player types of Achievers,

Explorers, and Socializers.

 12

Thawonmas and Iizuka also use Haar wavelets and Dynamic Time Warping

(DTW) to classify action logs (Thawonmas, 2007b). The size of the log is reduced by

using Haar wavelet transformation. These reduced logs are then compared to a training

set using k nearest neighbor and the DTW distance. DTW distance is used for deriving

distance between time series data. Using logs from The ICE they separated players into

three groups. The groups are each assigned a series of three tasks to be performed in

order. The difference between the three groups is the order of the three tasks. They are

able to classify players from each of the three groups. They do not give a specific

analytical result, but they did supply many confusion matrices. Looking at the confusion

matrices, their best classification rate is 83% across the three groups.

Thawonmas, Kurashige, and Chen use an algorithm to detect landmarks and use

player transition probability matrices from The Ice and Angel’s Love game logs to cluster

players (Thawonmas, 2007c). They develop an algorithm that divides up the game map

and associates a square with a high amount of traffic with a landmark. Player trails are

then used to develop player transition probability matrices from between the identified

landmarks and CMDS is used to cluster players. They claim their “evaluation results

confirmed that [their] approach successfully identified player clusters having different

movement patterns (Thawonmas, 2007c).”

Leuski and Lavrenko use statistical language modeling and text clustering

techniques to explore connections between human activities and the content of textual

information regarding those activities (Leuski, 2006). They synchronized chat and game

logs from the commercial online game BladeMistress. Using hypothesis testing, they try

to identify a connection among avatar chat, actions, location, and time. They note that

 13

they are able to classify large monster kills with a 90% true positive rate from message

content, and a 60% true positive rate for smaller monster kills.

Chen and Hong use avatar idle time as a biometric identification of a player

(Chen, 2007). They use the time between avatar movements in Angel’s Love. The idle

time includes chat and character maintenance. They suggested using a one-sided

Wilcoxon test on the Kullback-Leiber divergence between two idle time distributions to

identify if both distributions come from the same player. They conclude that a larger

history size and longer detection time increases the accuracy of determining between two

players to over 90%.

Chen, Jiang, Huang, Chu, Lei, and Chen use internet packet information from the

commercial online game Ragnarok Online to identify bots vs. human players (Chen,

2009). A bot is a computer program designed to play a game instead of a human. They

are generally used to perform repetitive tasks that a player needs to do for a game but

doesn’t want to spend the time. Chen et al. use a combination of analyzing client

response times, burstiness trends, burstiness magnitude and reaction to network

conditions. Burstiness is the variability of packet counts sent in successive order. They

are able to achieve a 95% correct detection rate with a high false positive rate of about

40%.

Ahmad, Keegan, Srivastava, Williams and Contractor investigate identifying gold

farmers using a multistage approach (Ahmad, 2009). A gold farmer in this investigation

is a bot created to kill in-game monsters to earn gold to be sold to other players. This

kind of activity is generally banned by MMOGs due to the fact it depreciates the in-game

economy. As part of The Virtual World Exploratorium Project, they have access to three

 14

years of player data from one of the largest commercial MMOGs, EverQuest II. The

multistage approach consists of using a deductive logistic multiple regression model to

identify specific traits of gold farmers. Then, an inductive evaluation of binary classifiers

such as Naive-Bayes, k-Nearest Neighbors, Bayesian Networks, and Decision Trees is

used to correctly identify gold farmers. The results show a true positive rate of around

20% with a false positive rate practically nonexistent.

From this discussion on research in classification of players in MMOGs, three

major themes arise. First, the majority of the research that has been done consists of

using simulators instead of actual MMOG data. This can skew data since this approach

uses mathematical techniques to identify preprogrammed behaviors defined by

mathematical equations to represent a specific category. Second, throughout the

research, researchers assign specific behaviors/attributes to a category of player based

upon assumptions. These assumptions can easily mislead classification efforts since the

actual significant features are unknown. Third, none of the approaches examined in the

literature use ANNs which have been shown to be effective in classifying nonlinear data.

2.2. Overview of Artificial Neural Networks for Classification

ANNs are widely used in pattern recognition. They have been shown to be ideal

for modeling nonlinear systems as seen in Loeffelholz (2009). Two main attributes of

ANNs are they have no assumption that the features are linearly related to the output like

regression, and they have no assumptions of distribution, giving them the freedom to be

adapted to any system. Sargent (2001) conducted research in comparison between ANNs

and linear regression. In his article, he examines 29 medical studies that use both ANNs

and regression for their analysis. He uses their results to compare the performance

 15

between ANNs and regression. He concludes that from these results, there is no

conclusive evidence that ANN or regression is better than the other. Looking at Table 1,

we can see that 4/29 studies (14%) favored regression, 13/29 studies (45%) were tied, and

12/29 studies (41%) favored ANNs. With these results, it would seem that using ANNs

would be a better option since 86% of the time it would have the same or better results

than using regression.

Table 1: Summary from 28 medical studies (Sargent, 2001)

The remainder of this section is broken into three subsections. The first

subsection covers the three common ANNs, FFNNs, Radial Basis Function Neural

Networks (RBFNNs), and GRNNs. The second subsection covers how to prepare data

 16

for the GRNN, including standardization and validation techniques. The third subsection

covers how to rate the ANN performance. It covers confusion matrices, performance

measures, and receiver operating characteristic (ROC) curves.

2.2.1. Artificial Neural Networks

ANNs are inspired by biological systems and are modeled as a collection of

artificial neurons, as seen in Figure 5, Figure 6, and Figure 7. The collections of artificial

neurons make ANNs ideal for modeling nonlinear systems. Neural networks are

computationally intensive, but as computers have advanced, they have allowed results to

be obtained faster and have enabled the use of massive data sets.

Three common ANNs are FFNNs (Figure 5), RBFNNs (Figure 6), and GRNNs

(Figure 7). FFNNs are very common, but require a large amount of time to train and

assign weights to the neurons. RBFNNs are similar to FFNNs in that the neurons have

weights, but they have fewer weights to train and each neuron is assigned a distribution.

GRNNs are similar to RBFNNs in that each neuron is assigned a distribution, but there

are no weights to train, making them relatively fast compared to RBFNNs and FFNNs.

FFNNs consist of at least three layers. They are an input layer, a hidden layer and

an output layer. The input layer consists of each feature and can come in any numbered

format. The hidden layer may consist of one or more interconnected layers. In our

example (Figure 5) there is only one hidden layer. The number of hidden layers and

neurons within each hidden layer is specified by the user. Each of the arcs connecting the

nodes has a weight. The size of the weights depends on the significance of the feature.

The weights are iteratively calculated using backpropagation to minimize the squared

difference between the current predicted response and the true response. It may take

 17

many cycles to identify good weights and the process may never finish training. Even if

the training finishes, the resulting weights may not be optimal (Wasserman, 1989). The

output layer can have one or more output nodes, depending on the response.

Figure 5: Example Feed Forward Neural Network

Even with the training problems, FFNNs are very effective. The main drawback

of training a FFNN is the need for a user to monitor the training. This is mainly due to

the random element to the training resulting in different models each time the data is

trained. The resulting different models can also lead to complications when determining

an optimal or effective number of hidden layers and neurons per layer. The probability of

not finding optimal weights for each configuration of layers and neurons makes it

difficult to compare the different configurations.

RBFNNs are comprised of a series of neurons that are represented by a Gaussian

distribution centered on each point from the training set. During the development of the

 18

model, individual weights are trained and assigned to each neuron. Each observation in

the training set relates to a neuron. The RBFNN requires an input parameter to determine

the spread of the Gaussian distributions. Determination of the input parameter is

generally done by trial and error, but there are heuristics that have been developed to help

determine this parameter.

Figure 6: Example Radial Basis Function Neural Networks

A method similar to RBFNN is the GRNN. Developed in 1991 by Donald F.

Specht (1991), GRNNs are one pass learning algorithms which are faster than FFNNs

and does not need to train weights like RBFNNs and FFNNs. GRNNs were developed

for regression, but can be easily adapted for use in classification as shown in Figure 7.

The basic idea behind GRNNs is to find an underlying distribution to a training

set of data points with a known response. Then we can compare unknown data points to

the distribution to identify the response. Parzen windows are used to develop the

 19

underlying distribution. This works by applying a Gaussian distribution to each data

point within the training set. Then each point within the space is compared to the

distributions created by the training set and the results are summed to obtain the

estimated response value. Figure 8 is a representative example of what a Parzen

windows distribution looks like. We can see individual points with a single Gaussian

kernel in the foreground and in the background we can see what happens when points are

close together and get added together.

Figure 7: Two Category Generalized Regression Neural Network

When used for classification, multiple distributions are created. Each of these

distributions is associated to a category. Then, the unknown set of features is compared

against each category. The value derived from each category is related to the probability

 20

that the feature set came from that category. Figure 7 is a graphical representation of a

classification GRNN with two categories.

Figure 8: Contour Plots of a Parzen Windows Distribution

Probabilistic Neural Networks (PNNs) are similar to GRNNs. They both generate

Parzen windows to estimate the distribution of each category. In a previous article about

PNNs (Specht, 1990), Specht noted that we could readily change the kernel of the Parzen

windows with the application of different distance measures. He also noted that certain

kernels may be better for certain data sets. He supplied a short list of different kernels

that could be used. Table 2 displays all the kernels from Specht (1990) where n is the

 21

number of observations, p is the number of features, X is the test point, Xi is element i of

X, XA is the training set, XAij is element from XA row i and column j, and is the spread

of the function.

Table 2: Alternate Parzen Windows Kernels from (Specht, 1990)

 1

1
1, when all

2

n

A i Aijp
i

f X X
n

 X (1)

1 1

1
1 , when all

pn
i Aij

A i Aijp
i j

X X
f X X

n

X (2)

 2

1

2 2
1

1
exp

22

p

i Aijn
j

A p p
i

X X

f
n

X (3)

 1 1

1 1
exp

2

pn

A i Aijp
i j

f X X
n

 X (4)

12

2
1 1

1
1

pn
i Aij

A p
i j

X X
f

n

X (5)

2

1 1

sin
21

2
2

i Aij

pn

A p
i Aiji j

X X

f
X Xn

X (6)

Equation (7) is a GRNN developed for numeric data using the Euclidian distance

kernel, equation (3). Equation (8) is a GRNN developed for binary data using the

Hamming distance kernel, equation (4). For these equations, n is the number of

observations, p is the number of features, X is the test vector of size p, Xj is the jth

element from X, Z is the training set of size n by p, Zi is the ith row vector from Z, and Zij

 22

is element from Z row i and column j, Y is a vector of size n containing training

responses relative to Z, Yi is the ith element from Y, and is the spread of the Euclidian

function while is the spread of the Hamming (City Block) function.

2
1

2
1

exp
2

ˆ

exp
2

Tn
i i

i
i

Tn
i i

i

Y

Y

X Z X Z

X
X Z X Z

 (7)

 1 1

1 1

1
exp

ˆ
1

exp

pn

i j ij
i j

pn

j ij
i j

Y X Z

Y

X Z

X (8)

A problem that can arise through the application of equation (7) in MATLAB is

the distance measure within the exponential portion of the function can be large, causing

the value within the exponential to become a large negative number. The large negative

value can force the exponential to become small enough that MATLAB rounds the

number to zero. This can cause a problem when the sum of exponentials in the

denominator ends up equaling zero resulting in a divide by zero error. To fix this

problem, we can adjust the distance measure by shifting all the distances so the largest

(least negative) value is equal to zero. This will force an exponential in the sum of

exponentials in the denominator to be equal to one, thus guaranteeing the denominator

will be greater than zero. This will avoid a possible divide by zero, but will not affect the

overall equation. The following is the proof that the addition of a shift variable does

not affect the output from equation (7).

 23

2
1

2
1

exp
2

ˆ

exp
2

Tn
i i

i
i

Tn
i i

i

Y

Y

X Z X Z

X
X Z X Z

 (9)

2
1

2
1

exp exp()
2

ˆ

exp exp()
2

Tn
i i

i
i

Tn
i i

i

Y

Y

X Z X Z

X
X Z X Z

 (10)

2
1

2
1

exp
2exp()ˆ

exp()
exp

2

Tn
i i

i
i

Tn
i i

i

Y

Y

X Z X Z

X
X Z X Z

 (11)

2
1

2
1

exp
2

ˆ 1

exp
2

Tn
i i

i
i

Tn
i i

i

Y

Y

X Z X Z

X
X Z X Z

 (12)

Therefore to shift the largest distance to zero we set using equation (13).

2

max
2

T

i i

I

X Z X Z
 (13)

The shift value is added to the GRNN using Hamming distance, equation (8), in

the same way as it was added to equation (7). The result is equation (14) where we set

using equation (15).

 24

 1 1

1 1

1
exp

ˆ
1

exp

pn

i j ij
i j

pn

j ij
i j

Y X Z

Y

X Z

X (14)

1

1
max

p

j ij
I

j

X Z

 (15)

2.2.2. Preparing Data for Generalized Regression Neural Networks

When preparing data for modeling with a GRNN, two important considerations

are data standardization and validation. Since we are applying a single spread value for

all features, not standardizing will bias results based on the variance and values for

individual features. A common standardization technique is to normalize observations

for each feature in the data set. This can be done by applying equation (16) to each of the

n observations for an individual feature X. This helps balance data sets where the

features have greatly different scales. We can standardize the entire data set before

choosing a validation set to be fast and efficient, but this may skew the results since data

that may be used for testing or validation are also being used to normalize the training

data.

()
'

var()
i

i

X
X

X

X
 (16)

If there is a concern about including testing and validation data in the calculation

of the sample mean and variance for normalization, then the values can be calculated

from the training set and applied to observations from the testing and validation set

separately.

 25

A decision on the validation method needs to be made when partitioning the data

into training and testing sets. There are different validation methods that can be used for

constructing and validating ANNs. Two common methods are the hold out method and

K-fold cross validation. They both have their strengths. The hold out method is good

when there is a lot of data and it is acceptable to dispose of some data, while the K-fold

cross validation is good for small data sets where all data points are valuable, to include

data sets where one category has very few observations.

The hold out method randomly separates the data into sets (Kohavi, 1995). For

example, a standard hold out method would contain 60% of the data for training, 20% of

the data for testing parameters, and 20% for validating the model. This method is good

since the validation data is completely separate from parameter setting, therefore

avoiding any bias that may occur.

K-fold cross validation is where the data is separated into K sets (Kohavi, 1995).

Working with K data sets, one set is removed from the data and used as a test set to

identify optimal parameters or to evaluate the model using the rest of the data as the

training set. This is then repeated using another data set until all data sets have been

used. Then the average or Mean Square Error (MSE) is calculated from these responses

and is used in evaluating how well the model performs. This method is effective since it

uses all data for training and validation, but can be very computationally expensive.

A specific version of K-fold cross validation is ‘leave-one-out’ (Kohavi, 1995),

where K is equal to the number of observations. Here, each of the K sets has a single

observation. This version is commonly used and easy to implement. We use the ‘leave-

one-out’ method for the majority of our research and average the results across all K

 26

models. We do this because we assume this method would normally be used on a

training set of a hold out method, since the data would be smaller, and there is more value

placed on the retention of each data point. Another reason to use ‘leave-one-out’ is

because we assume that at least one of the categories of interest we are modeling is

disproportionately small and each point adds value to the model.

2.2.3. Artificial Neural Network Performance Measures

ANNs, when used for classification, rely on the confusion matrix for a measure of

performance. It is used to determine how accurate a model is when compared to actual

results. We can derive a number of performance measures from the confusion matrix,

such as Apparent Classification Accuracy (ACA), Apparent Error Rate (APER),

Precision, Recall, and F-Score.

In a confusion matrix, each row represents the predicted results from the model,

while the columns represent the actual results from the system. The sum of the

intersection of each predicted and actual results are displayed in their corresponding box

in the matrix.

Looking at Figure 9, we can see how a confusion matrix is put together. To

explain this better we consider a notional example in Figure 10. This example shows the

confusion matrix of a model determining if a response is a member of one of three

groups. We can see there were a total of 17 total observations tested. The model

predicted eight members of group 1, when in actuality there were six members of group

1. Of the six members of group 1, the model was able to predict only five of them. The

other three members predicted as group 1 were actually members of group 3, while the

last group 1 member was predicted to be a member of group 2.

 27

1 2

1 11 12

2 21 22

Actual

Membership

Predicted

Membership
N N

N N

the number of responses

 response binary

, , 1, 2,...,
n

ij i j

n

n

N i j n

Figure 9: Confusion Matrix

Actual

Membership

Group 1 Group 2 Group 3

Group 1 5 0 3Predicted
Group 2 1 5 1Membership
Group 3 0 2 0

Figure 10: Confusion Matrix Notional Example

The Apparent Classification Accuracy (ACA) (Kuncheva, 2004) is a way to

quantitatively measure how accurate a model is as a whole. It is calculated from

confusion matrices using equation (17). It represents the ratio of correctly predicted

responses to the total number of responses. Referring to the example in Figure 10, the

ACA would be 10/17 or 0.588. A drawback from using ACAs is if the data is severely

imbalanced. For example if 98% of the data is of one category, then the ACA would be

0.98 if the model classified all the data as being from the dominant category. This clearly

would not be useful for a study where classification results for a non-dominant category

was of interest.

 28

1

1 1

ACA

n

ii
i

n n

ij
i j

N

N

 (17)

The Apparent Error Rate (APER) (Kuncheva, 2004) is related to ACA in that it

quantitatively measures how inaccurate a model is as a whole. To calculate it you can

either use equation (18) or use equation (17) and (19). It represents the ratio of

incorrectly predicted responses to the total number of responses. Referring to the

example in Figure 10 the APER is 7/17 or 0.412. APER has the same drawback with

imbalanced data as ACA, since they are analyzed similarly.

1 1

1 1

,

APER

n n

ij
i j

n n

ij
i j

N i j

N

 (18)

 APER 1 ACA (19)

Precision (van Rijsbergen, 1979) is a measure of how accurate the model

predictions are for a specific classification. It is calculated from confusion matrices

(Figure 9), using equation (20) for classification i. It represents the proportion of

correctly classified points for a specific classification over all points predicted as that

classification. Referring to the example in Figure 10, the precision for Group 1 is 5/8 or

0.625.

1

precision() ii
n

ij
j

N
i

N

(20)

 29

Recall (van Rijsbergen, 1979) is a measure of how well the model predicted a

specific classification. It is calculated from confusion matrices (Figure 9), using equation

(21) for classification i. It represents the proportion of correctly classified points for a

specific classification relative to all the actual points for that classification. Referring to

the example in Figure 10 the recall for Group 1 is 5/6 or 0.833.

1

recall() ii
n

ij
i

N
i

N

(21)

F-Measure (van Rijsbergen, 1979) is a combination of both precision and recall.

It is calculated from equations (20) and (21), using equation (23) for classification i.

Referring to the example in Figure 10, the membership F-Measure would be 0.714. A

drawback to this measure is if the model does not classify anything for category i, it

results in a division by zero error. Therefore, we have modified equation (22) to assign

any undefined value as zero, as in equation (23). Figure 11 is a graph depicting how F-

Measure relates to precision and recall. We can see it ranges from zero to one, and

depicts a balance between the two performance measures.

2 precision() recall()
F-Measure()

precision() recall()

i i
i

i i

 (22)

2 precision() recall()
0

precision() recall()F-Measure()

0 0

ii

ii

i i
N

i ii

N

 (23)

A Receiver Operating Characteristic (ROC) curve is a graphical display of the

sensitivity to a binary classifier. When looking at output from an ANN, there is usually

some cut off used to convert it to binary. For example if an ANN response value was

 30

0.55 and the cut off was set to 0.5, then our reported response would be 1. But if the cut

off was set to 0.6, then our response would be set to 0. The model may be very sensitive

to the cut off and a ROC curve can identify this. A ROC curve plots the true positive rate

versus the false positive rate from a confusion matrix, as we adjust the cutoff point. In

the example ROC curve in Figure 12, we can see that if our current cut off rate is the

large dot, adjusting the cut off to the right to gain more true positives greatly increases

the false positives. If we adjust the cut off to decrease the false positives, then we greatly

reduce the true positives. The diagonal dashed line through the center of the chart

indicates the 50/50 division where above the line indicates the model predicts better, and

below the line is where prediction is better using a U(0,1) draw with a cut off of 0.5.

Figure 11: Contour plot of F-Measure related to recall and precision

 31

Figure 12: Receiver Operating Characteristic Curve Notional Example

2.3. Summary

This chapter reviews research on player classification in an MMOG and discusses

ANNs and their use in classification. The literature review highlights works done by

Chen et al. (2009) on bots vs. human players and Ahmad et al. (2009) identifying gold

farmers. The work and data from Chen et al. directly lead to the example application of

our hybrid GRNN in Chapter IV, while the work from Ahmad et al. and the Virtual

World Exploratorium using EverQuest II data contributed to the application of our full

analysis algorithm in Chapter VI.

The discussion on ANNs highlights the GRNN. Application of the GRNN

focuses on the standard Euclidian distance and a modification using the Hamming

distance. The section also highlights ‘leave-one-out’ as a preferred validation method

and F-Measure as a preferred performance measure for our research.

 32

III. Feature Selection for Player Classification

One of the first challenges when creating a multivariate model for classification is

feature selection. It may be possible to collect a large number of features associated with

a particular response. There can be two problems with this. One problem is not all of

these features are significant to the response. The trick is to identify which features are

significant features and which are noise or non-significant features. The second problem

is the extra features combined with a large number of observations can make training and

running the model extremely time consuming. Thus, a reduction in features can make the

model more time efficient. There are methods to reduce the feature set of data, but none

are specifically developed for the Generalized Regression Neural Network (GRNN). It is

likely that a feature reduction technique may perform better for certain models, and a

feature selection technique developed for a specific modeling technique would perform

optimally for that modeling technique. Therefore, since there are no GRNN specific

feature reduction methods, a feature set obtained by using a standard feature reduction

technique may not be optimal for a GRNN model.

This chapter is divided into four sections. The first section reviews some feature

selection techniques. The second section covers our new feature selection technique

developed for the GRNN. The third section is an example application of our new GRNN

feature selection technique. The fourth section is a summary of the chapter.

 33

3.1. Review of Select Feature Selection Techniques

There are many different techniques for feature selection. We cover four different

methods. They are factor/primary component analysis, stepwise regression, signal to

noise ratio in a Feed Forward Neural Network (FFNN), and feature selection using a

Radial Basis Function Neural Network (RBFNN).

Factor analysis (FA) and Primary Component Analysis (PCA) (Duda, 2001) are

two common techniques for feature selection. Both techniques reduce dimensionality of

a data set by forming linear combinations of the features. These linear combinations

relate to either the correlations among the features or variance of the features in both FA

and PCA. These techniques combine original features into a new (reduced) feature set.

A problem with these techniques is they do not reduce the number of features based on

significance to the response. Therefore, the new reduced feature set from either FA or

PCA will be comprised of features that may or may not be significant to the response.

Stepwise regression (stepwisefit, 2010) is another technique to reduce features

from a data set. This technique generates a linear model and determines weights relating

the significance of each feature. Then, depending on which technique you use, it adds or

deletes the most/least significant feature from the model. This technique is effective, but

is limited to linear regression models.

FFNNs tend to be very time consuming, but the structure has been shown to work

well for feature selection as in Bauer et al. (2000). The weights to the nodes in the

hidden middle layer of a two layer FFNN can be used to identify the significance of a

feature compared to a noise feature. As in Bauer et al. (2000), a Signal to Noise Ratio

(SNR) can be developed using the weights from Figure 5 and equation (24). It evaluates

 34

the ratio of the weight of a feature to the weight of a noise feature generated with random

numbers from a uniform distribution. The feature with the smallest SNR is eliminated

from the set and SNRs are re-evaluated with the reduced feature set. The Apparent

Classification Accuracy (ACA) can be calculated at each step to see how the model

worsens with each removed feature. A plot such as Figure 13 can be used to identify a

point where the ACA starts to fall off dramatically. The point circled in Figure 13

indicates the cut off between significant and insignificant features. Thus the remaining

features are significant to the model. A major drawback to this method is the FFNN has a

random element to it. This makes it difficult to generate consistent model weights, thus

possibly changing the least significant feature.

21
,

1
10

21
,

1

10 log

J

i j
j

i J

Noise j
j

w

SNR
w

 (24)

Figure 13: Plot of apparent classification accuracies after stepwise feature reduction

 35

RBFNN is a neural network technique that is faster and less random than the

FFNN. Research performed by Flietstra et al. (2003) use a combination of clustering and

gradient analysis to reduce the number of features and size of the training set. They use

clustering to reduce the number of exemplars and gradient analysis to reduce the number

of features. Similar to the FFNN SNR technique, they identify the optimal number of

features using a plot of performance measures relative to the remaining number of

features, as in Figure 13. A drawback to using RBFNNs is the use of a second layer of

hidden weights that need to be trained similar to FFNNs, adding complexity and time.

3.2. New Feature Selection Technique

We propose a new feature selection technique. Inspired by work from Flietstra

(2003) and Ruck (1990), our technique is based on using Parzen Windows distributions

selected by data type in building a GRNN. It separates the training data into categories

by type and then using the selected Parzen Windows distribution, identifies the feature

that has the smallest change between the categories. This is done by analyzing the

gradient of vectors between the categories, with the intent to identify the changes in the

gradient related to when the vector crosses the boundaries between the categories. The

feature with the smallest change should be the least effective feature for discriminating

between the categories and is removed from the training set. This method is repeated

until all features have been removed. Then, the analyst can compare the performance of

the training sets at each stage and determine the best training set to use.

Figure 14 is an overview of our new feature selection technique. It can be broken

into three main steps. The first step is determining a spread parameter to be used in the

second and third steps. The second step is evaluating the performance of the model. This

 36

is done prior to the removal of a feature. This performance measure is retained for

comparison with the subsequent reduced model (one less feature). The third step is the

removal of a feature. It contains sub-steps of finding clusters, forming vectors between

the clusters, calculating the gradients along the formed vectors, and then eliminating the

feature(s) with the smallest gradient magnitude. All three steps are repeated until all of

the features are removed. These steps are elaborated on in subsection 3.2.1.

Figure 14: Flow Chart Depicting Generalized Regression Neural Network Feature
Reduction for Numeric and Binary Data Types

3.2.1. Technique Overview

The first step in the feature reduction method is to determine an optimal spread.

This spread will be used in evaluating the performance of the training set and for

determining the gradient of the vector generated between the categories in the feature

reduction step. Therefore it is important to find an optimal or near optimal spread. There

are different methods for determining the spread in a GRNN, but one of the most

common is an exhaustive search. This is where you create models with differing spread

 37

values and select the spread with the best performance. This can be time consuming on

large data sets, but for smaller data sets it is sufficiently quick.

The second step is recording a performance measure. This is done so we can

evaluate how well the model does with the beginning set of features. We collect the

performance measure prior to the removal of a feature in our algorithm since we need a

starting performance for a full model. The performance measure is then collected for

each reduced model along with the associated remaining features. This is done until all

the features have been removed. A graph such as Figure 13 can be generated showing

the performance measure for each model to determine the optimal number of features.

The third step is identifying a feature for removal. Since there are no calculated

weighting functions like a FFNN, we must look at other methods to classify the

effectiveness of each feature. We start by looking for a significant change in the gradient

at or between each of the boundaries for classification categories. In examining these

gradients, we look for dramatic changes in any of its partial derivatives. We assume that

a feature with a significant ability to discriminate between categories will have a dramatic

change (large magnitude) in the partial derivatives around the boundaries between

classification categories. Therefore, the feature(s) with the smallest change are the least

effective feature(s) for discriminating between categories and is removed from the model.

This approach requires searching the data space to find the boundaries between

classification categories. We standardize the data so we do not need to worry about

features with different ranges and scales. Then, we search for the boundaries. One

option is to exhaustively search the data. This can be done by specifying a number of

equally separated levels for each feature and then creating a series of test points using all

 38

possible combinations of the divisions for each feature. The problem with this is the

sheer number of test points possible. To evenly search a space with p features and m

divisions of each feature, requires mp test points. For example, if we had 3 features and

10 divisions for each feature, we would have 103 or 1,000 test points. This could easily

get out of hand as seen with 17 features and only 3 divisions, resulting in 317 or

129,140,163 test points.

To avoid the problems with the volume of test points, we narrow our search

space. Instead of testing all the points, we look in areas where we know there is a

boundary between the categories, such as the space directly between training points from

differing categories. Instead of connecting each point from one category to each point

from another category, we identify multiple clusters of observations within each

category. Then, we identify the centroid for each cluster. Now, these centroids are

representative samples of each category and vectors linking centroids from differing

categories contain a point or points identifying the gradient change between categories.

Therefore, all the vectors between centroids from differing categories are identified and

points along these vectors are collected and used to compute gradients and partial

derivatives for selecting a feature(s) for removal as described previously. This approach

provides a more effective use of space and significantly reduces the number of test points

relative to an exhaustive search across all features.

To identify clusters we use X-means (Pelleg, 2000). This method determines the

optimal number and centroids of clusters from a set of data. It is available in an

executable form for Windows and with a careful set up of the data, we are able to execute

 39

the routine from MATLABs DOS command function, thus allowing the use of X-means

in MATLAB scripts.

The training data is separated into corresponding categories as described above.

Then X-means is applied to each of the categories to identify clusters of similar features

within each category. The centroids of each cluster are retained as representations of the

clusters. Then, vectors are generated between all the centroids from differing categories.

These vectors are then divided up into an equal numbers of representative points. These

points are used to obtain gradients and the magnitude of each gradient is summed. It is

possible that a pair of centroids from differing categories could be equal. These special

pairs can be skipped since the vector between them has no length. After all the test points

have been collected and their magnitudes summed, the summed gradients are compared

and the feature with the smallest summed magnitude is identified. Since this feature has

the least change across the data sets, it is likely not as significant as the other features.

However, it is possible to have multiple minimum values such as when there are multiple

features with a gradient equal to zero. If the minimum value is not equal to zero, only a

single feature is removed and our code uses the first minimum it identifies. If the

minimum value is equal to zero, we assume that there is no significant change and

remove all of the features resulting in a zero magnitude gradient. There may be better

methods when dealing with multiple minimums, but that is for future research.

Now, a new training set is formed using all the features, less the one feature (or

multiple zero gradient features) that was deemed least significant. The remaining

features and performance measures are stored for reference. We then go back and

calculate a new spread and repeat the entire process with the remaining features. This is

 40

done until all but one feature is removed. After we have removed all but one feature, we

then plot the performance measures with respect to the number of features left as seen in

Figure 13. This plot aids in identifying which features we should use for our model. The

cut off is dependent on the user. We could use the maximum performance measure

value, a severe drop in performance, or even have a minimum performance measure

threshold. Looking at the example in Figure 13, the analyst would most likely chose six

features, since ACA drops off sharply after this point. After the cut off is identified, a

model can be generated based on the features that have been identified as significant.

3.2.2. Gradient of Generalized Regression Neural Networks

For this research, the gradient of the Gaussian distributions developed for the

GRNN must be calculated at several points. With the interest in dividing the data up by

binary and numeric data points, we need to find the gradient of Gaussian distributions

with both Euclidian and Hamming distances. Note that the Hamming distance is the

same as the city block distance when applied to single binary digits. We show the

development of the gradients for both cases in the following discussion. Since both

GRNN functions use the same basic Gaussian distribution formula from equation (7), we

can separate the basic formula Y(X) into a numerator g(X) and a denominator h(X).

Where, X is the 1 by p matrix associated with a test point and p is the number of features

in the data set.

ˆ g

Y
h

X

X
X

 (25)

The partial derivatives for the numerator for the Euclidian distance can be seen

below.

 41

2

1

exp
2

Tn
i i

i
i

g Y

X Z X Z
X (26)

 2 2
1

1
exp

2

Tn
i i

i j ij
ij

g
Y X Z

X

X X Z X Z
 (27)

Where n is the number of observations, p is the number of features, X is the test

point, Z is the training set of size n by p, Zi is the ith row vector from Z, and Zij is element

from row i and column j from Z, Y is the training responses relative to Z, Yi is the ith

element from Y, and is the spread factor. The partial derivatives for the denominator

for the Euclidian distance can be seen below.

2

1

exp
2

Tn
i i

i

h

X Z X Z
X (28)

 2 2
1

1
exp

2

Tn
i i

j ij
ij

h
X Z

X

X X Z X Z
 (29)

Now we can use the quotient rule to combine the partial derivatives for the

numerator and the denominator as shown in equation (30). We use equation (30) with

our calculated partial derivatives when evaluating the gradient.

 2

ˆ
j j

j

g h
h g

X XY

X h

X X
X X

X

X

(30)

The same method can be used for the city block distance (Hamming distance for

binary data), except using the derivatives for the numerator and denominator below to fill

into equation (30). The partial derivative for the numerator for the Hamming distance,

equation (8), can be seen below.

 42

1 1

1
exp

pn

i j ij
i j

g Y X Z

 X (31)

1 1

1 1

1 1
exp (1)

1 1
exp (1)

Does Not Exist

pn

i j ij j ij
i j

pn

i j ij j ij
i jj

j ij

Y X Z X Z

g
Y X Z X Z

X

X Z

X

 (32)

Where n is the number of observations, p is the number of features, X is the test

point, Z is the training set of size n by p, Zi is the ith row vector from Z, and Zij is element

from row i and column j from Z, Y is the training responses relative to Z, Yi is the ith

element from Y, and is the spread factor. The partial derivatives for the denominator

for the Hamming distance can be seen below.

1 1

1
exp

pn

j ij
i j

h X Z

 X (33)

1 1

1 1

1 1
exp (1)

1 1
exp (1)

Does Not Exist

pn

j ij j ij
i j

pn

j ij j ij
i jj

j ij

X Z X Z

h
X Z X Z

X

X Z

X

 (34)

Since we are working with absolute values, we need to note that first the partial

derivatives are step functions and second that the derivatives of both the numerator and

the denominator do not exist when Xi = Zi. For our algorithm, we have inserted a check

 43

to make sure the test points do not equal one or zero and if they do, the test point is

adjusted by a small factor to avoid a value that does not exist.

Again, since our algorithm is executed in MATLAB, we include a shift factor to

adjust the exponentials to avoid the value being rounded to zero and thus having zero in

the denominator, similar to the shift factor seen in section 2.2.1. First we multiply

equation (30) by a factor equal to one for both Hamming and Euclidian distances

2

2 2

ˆ exp

exp

j j

j

g h
h g

X XY

X h

X X
X X

X

X

(35)

then distribute exp() to each sub function

2 2

2

exp expˆ

exp

j j

j

g h
h g

X XY

X h

X X
X X

X

X

(36)

to obtain equations (37), (38), (39), and (40) for Euclidian distances and equations (42),

(43), (44), and (45) for Hamming distances. Where is defined by equation (41) for

Euclidian distance and (46) for Hamming distances.

2

1

exp exp
2

Tn
i i

i
i

g Y

X Z X Z
X (37)

 2 2
1

1
exp exp

2

Tn
i i

i j ij
ij

g
Y X Z

X

X X Z X Z
 (38)

2

1

exp exp
2

Tn
i i

i

h

X Z X Z
X (39)

 44

 2 2
1

1
exp exp

2

Tn
i i

j ij
ij

h
X Z

X

X X Z X Z
 (40)

2

max
2

T

i i

X Z X Z
 (41)

Similarly

1 1

1
exp exp

pn

i j ij
i j

g Y X Z

 X (42)

1 1

1 1

1 1
exp (1)

1 1
exp exp (1)

Does Not Exist

pn

i j ij j ij
i j

pn

i j ij j ij
i jj

j ij

Y X Z X Z

g
Y X Z X Z

X

X Z

X

 (43)

1 1

1
exp exp

pn

j ij
i j

h X Z

 X (44)

1 1

1 1

1 1
exp (1)

1 1
exp exp (1)

Does Not Exist

pn

j ij j ij
i j

pn

j ij j ij
i jj

j ij

X Z X Z

h
X Z X Z

X

X Z

X

 (45)

2

max
2

T

i i

X Z X Z
 (46)

 45

Now that we have the set of partial derivatives for each test point, we can

combine their absolute values to form a modified gradient for each test point that

represents the magnitudes of the partial derivatives, see equation (47). This will indicate

the change in the distribution at point X.

1 2

ˆ ˆ ˆ
ˆ , , ,

p

Y Y Y
Y

X X X

X X X
X (47)

We will sum the modified gradients for all of the test points to identify the feature

with the greatest sum of magnitudes. The summed gradients are used to identify the

boundaries between the different categories and evaluate the value of each factor.

3.3. University of Wisconsin Breast Cancer Data Example

We apply our feature selection method to breast cancer data obtained from

University of California Irvine Machine Learning Repository (Breast Cancer Wisconsin

(Original) Data Set, 1992). This data set was chosen since it was used by (Fleitstra,

2003) to test their feature/architecture selection technique for the RBFNN.

3.3.1. Data description

The data was initially collected from the University of Wisconsin Hospitals,

Madison by Dr. William H. Wolberg for the diagnosis of breast cytology (Wolberg,

1990). It contains nine features and one response. The nine features are Clump

Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Marginal Adhesion,

Single Epithelial Cell size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses.

The response is a binary result of benign (0) or malignant (1). The data set contains 699

observations with 16 having missing data.

 46

Initially, we take the 699 observations and eliminate the 16 observations with

missing data. Then, similar to the Fleitstra article (2003), we add five noise features.

They are columns of random variates from a uniform distribution over the unit interval.

Two more features are repeated features with a noise element added. The noise element

is a random draw from the Normal distribution with mean of zero and standard deviation

of 0.04. The two repeated features are features that were identified by Fleitstra et al.

(2003) to be significant (Bare Nuclei) and relatively insignificant (Mitosis). The

modified data set has 16 features and 683 observations. The observations can be broken

into 444 benign (0) and 239 Malignant (1). The data set is reviewed in Table 3 with

associated feature number.

Table 3: Feature Overview of Breast Cytology Data

Cancer
#features #observations ratio of 0/1

16 683 444/239

column # features Data types min max
1 Clump Thickness Integer 1 10
2 Uniformity of Cell Size Integer 1 10
3 Uniformity of Cell Shape Integer 1 10
4 Marginal Adhesion Integer 1 10
5 Single Epithelial Cell Size Integer 1 10
6 Bare Nuclei Integer 1 10
7 Bland Chromatin Integer 1 10
8 Normal Nucleoli Integer 1 10
9 Mitoses Integer 1 10
10 Noise U(0,1) Numeric 0.0005 0.9991
11 Noise U(0,1) Numeric 0.0078 0.9995
12 Noise U(0,1) Numeric 0.0003 0.9995
13 Noise U(0,1) Numeric 0.0007 0.9954
14 Noise U(0,1) Numeric 0.0010 0.9998
15 Bare Nuclei +N(0,0.04) Numeric 0.9119 10.0809
16 Mitoses + N(0,0.04) Numeric 0.9005 10.0923
17 benign (2) or malignant (4) Binary (converted to 0,1) 2 4

 47

3.3.2. Analysis

For our analysis we employed ‘leave-one-out’ for our validation method. We

decided on using this since we were setting our algorithm up to be employed on large

imbalanced data sets. We also focused on ACA for our performance measure, since the

data is relatively balanced when compared to the larger massive multiplayer online games

(MMOG) data sets we use and we wish to compare our results with Fleitstra et al. (2003).

We analyzed the data using five different numbers of sections for the test vectors

between cluster centroids. This was done to see if the number of divisions of the vectors

between clusters affects the feature reduction. We divided the vectors into 500, 100, 10,

and 2 sections. The resulting order of features reduced were the same for all the set ups.

The order of feature reduction can be seen in Table 4.

Looking at Table 4 we note that the first two features removed were noise

features. We also note that early on (within the first nine), all the pure noise features

have been removed. We would expect all the noise features to be removed first, but it is

possible that some of the features collected could negatively affect the classification or

that the noise features were better than some collected features.

We assumed that feature 16 would be removed before feature 9, along with

feature 15 removed before feature 6. Noting that our assumption was correct for 6 and

15, but not for 9 and 16, we examined the amount of added noise. The original response

values for feature 9 ranged from 1-10, thus the amount of noise added from a N(0,0.04)

would likely be so small as to not significantly affect the results. This explains why

feature 16 was not removed before feature 9.

 48

Table 4: Summary of Breast Cytology Feature Selection
Cycle Removed Feature ACA Modeled Features

0 - 0.9619 1-16

1 11(noise) 0.9663 1-10,12-16

2 13(noise) 0.9634 1-10,12,14-16

3 9 0.9663 1-8,10,12,14-16

4 8 0.9634 1-7,10,12,14-16

5 10(noise) 0.9605 1-7,12,14-16

6 14(noise) 0.9634 1-7,12,15,16

7 5 0.9605 1-4,6,7,12,15,16

8 15(6+noise) 0.9619 1-4,6,7,12,16

9 12(noise) 0.9649 1-4,6,7,16

10 7 0.9678 1-4,6,16

11 4 0.9678 1-3,6,16

12 3 0.9678 1,2,6,16

13 2 0.9663 1,6,16

14 1 0.9502 6,16

15 6 0.8975 16

16 16(9+noise) - -

Looking at Table 5 and Figure 15, we note that the first 13 features removed have

little effect on ACA. This would be the logical place to cut off our feature reduction.

Therefore our final model contains features 16, 6, 2, and 1. These features effectively

represent the diagnosis of breast cytology.

Since we used the leave-one-out method, we can just use the ACA from the test to

describe the accuracy. From Figure 15 we see an ACA of 0.9619 with all the features

while with only 4 features we obtain an ACA of 0.9678, increasing the ACA while

greatly reducing the number of features used.

 49

Figure 15: Plot of apparent classification accuracies versus number of features
removed for University of Wisconsin Breast Cancer Data

This example demonstrates that our new method works well for feature selection.

We can see that all the pure noise features are removed early on, along with the

redundant features. We are left with 4 features, resulting in an ACA better than using all

16 features. We did retain a feature that was both deemed to be insignificant and has

noise added to it, but looking at Table 3 we can see the noise is small and most likely

didn’t really affect it. Since we use the data in a similar approach to that of Fleitstra et al.

(2003), we can compare our findings. Before we compare, we need to note that our data

is not identical, since we generated our own noise. We also do not know what validation

method they used and both of these factors impact results and our comparison.

Therefore, we will display the differing results, but cannot definitively conclude one

method better than the other. In trying to keep with their analysis, we use the same

distributions for noise and also use the number of features with the minimum APER

(maximum ACA) as our retained features.

 50

Fleitstra et al. (2003) retains 10 features with an APER of 0.0458, while we retain

4 features with an APER of 0.0322. We retain fewer features with a lower APER.

Unfortunately, we do not know all of the 10 features Fleitstra retains, but we do know

that they retain both redundant features, so we at least have two features in common. We

attempted to keep the data as much the same as Fleitstra, but there are differences since

we were required to generate our own random features and validation sets. These

differences could drive some of the performance, but not large enough to say that the

method did not perform well. Therefore, even though our feature selection technique

allowed us to model the data with a better APER with fewer features, we can’t be certain

that the greater performance is from the technique or the data differences and conclude

that our method is equivalent to Fleitstra.

3.4. Conclusion

This chapter presents our feature selection technique that begins by using Parzen

Windows distributions selected by data type in building a GRNN. Features are compared

by examining the magnitude of the partial derivatives at selected points along gradients

between points or clusters from different classification categories. Our discussion details

the basic algorithm and equations, to include a modification to eliminate problems from

rounding errors. It concludes with an example analysis using the University of

Wisconsin breast cancer data from University of California Irvine Machine Learning

Repository. Noise features were added to the data, and our feature reduction technique

was effective in reducing the data from 16 features to just 4, while increasing the ACA

from 0.9619 to 0.9678.

 51

While coding up this technique attention needs to be given to validation and how

the calculations are performed. This algorithm can be costly in both time and memory

when applied to large data sets. Our initial code was developed for a small data set, with

only 16 features and about 700 observations. It took only a few minutes to complete.

When we then changed the data to a much larger dataset, with 27 features and over

2,000,000 observations, we quickly ran out of memory. With a few memory conserving

tricks such as only working on parts of the data and keeping data on the hard drive

instead of in memory, we were barely able to get the technique to function. Therefore,

we reduced the number of observations to over 21,000 observations to make the data set

more manageable. We calculated the time it would take to complete our feature

reduction technique for the reduced set and determined it would take about three months.

We then had to look at how we were performing our calculations and leveraging some of

MATLABs strengths in matrix multiplication. After all the extra work, we now have an

algorithm that completes in about three days. With some of this in mind, it is important

to think about how these calculations will be applied to the intended data set along with

problems that may arise from the data set.

 52

IV. Hybrid Generalized Regression Neural Network for Classification

There are many data sets that are not one type or another, but a mix of data types.

Our hybrid Generalized Regression Neural Network (GRNN) method applies the concept

that a mixed data set may be modeled better using data specific GRNN kernels.

Specifically we separate a mixed data set into numeric and binary data types. Categorical

data is handled by transforming each category into a binary variable. Then each data type

is processed using the corresponding kernel. The final results are then combined using a

convex combination to retain the 0-1 output format.

This chapter is divided into four sections. The first section discusses the

background to our hybrid GRNN. The second section covers the methodology to our

hybrid GRNN. The third section is an example application of the new hybrid GRNN

method for player classification using a large Massive Multiplayer Online Game

(MMOG) database. The fourth section is a summary of the chapter.

4.1. Background

In a previous article about Probabilistic Neural Networks (PNNs) (Specht, 1990),

Specht noted that we could change the kernel of the Parzen windows and that certain

kernels may be better for certain data sets. In particular, he noted that Euclidian distance

was good for numeric data and Hamming distance was good for binary data. Since PNNs

and GRNNs are similar in the use of Parzen windows, we can use selected kernels best

suited to a data type to generate models. It can be shown that City Block distance is

equal to Hamming distance when using binary data, so equation (48) is a GRNN

developed for binary data, while equation (49) is a GRNN developed for numeric data.

 53

For these equations, n is the number of observations, p is the number of features, X is the

test vector, Z is the training set of size n x p, Y is the training responses relative to Z, and

 or is the spread of the function. Equation (48) is for the standard or Euclidian

distance based GRNN, while equation (49) is for the binary or Hamming distance based

GRNN.

2
1

2
1

exp
2

ˆ

exp
2

Tn
i i

i
i

E Tn
i i

i

Y

Y

X Z X Z

X
X Z X Z

 (48)

 1 1

1 1

1
exp

ˆ
1

exp

pn

i j ij
i j

H pn

j ij
i j

Y X Z

Y

X Z

X (49)

4.2. Methodology

The flow of the hybrid GRNN is outlined in Figure 16. First the data is separated

by type, binary and numeric. Then the data is standardized so we can use one spread for

each data type. The standardizing only applies to the numeric data since binary data all

have the same scale. Then, using both equations (48) and (49) we build GRNN models

for each data type. The building of these models includes optimizing spreads for each

model. Then the raw probabilities output from the retained models are combined using a

convex combination, as in equation (50). The convex combination is optimized by

cycling through several parameters for β to identify the best outcome for a pre-specified

performance measure. Then when the best combination is identified it is used to create

 54

the final combined raw probabilities that are used to identify the final output of the

model.

 ˆ ˆ ˆ1 , 0,1H EY Y Y X X X (50)

Figure 16: Flow Chart of the Hybrid Generalized Regression Neural Network

An added benefit of using this method is that it lends itself to parallel processing.

With large mixed datasets, performing the calculations can become severely time-

consuming. With this method, since we are developing independent GRNNs for different

data types, they can be processed on separate computer nodes, thus working in parallel

with each interim GRNN calculated with less data. Both of these aspects can greatly

reduce total processing time.

4.3. Bot Traffic Example

To test the Hybrid GRNN, we chose data from research performed by Chen et al.

(2009) on identifying bots. They investigated automatic, game independent, bot

 55

identification through network traffic analysis. An MMOG developer is very interested

in identifying bots. Bots can have a very negative effect on the community within the

MMOG and are generally forbidden by game developers. They give unfair advantages to

players through reduction in time invested by players and they unbalance game

economies.

The basic idea behind the research from Chen et al. (2009) was to see if the

Transmission Control Protocol (TCP) traces from a bot were statistically different from

the TCP traces from a human player. A TCP trace is the collection of all the headers

from the information packets sent between two computers. A TCP trace has very little

information as seen in Figure 17. The basic TCP trace information contains a time

stamp, sender IP address, IP address, packet flag, number of bytes sent, and error

checking information. The authors used this data to calculate response times, sending

patterns, volume of information, and sensitivity to network conditions.

12:18:10.790326 IP 192.168.0.180.1153 > 61.220.62.131.5000: . ack 60 win 64109
12:18:10.824979 IP 61.220.62.131.5000 > 192.168.0.180.1153: P 60:69(9) ack 1 win 17359
12:18:10.992232 IP 192.168.0.180.1153 > 61.220.62.131.5000: . ack 69 win 64100
12:18:11.026253 IP 61.220.62.131.5000 > 192.168.0.180.1153: P 69:129(60) ack 1 win 17359
12:18:11.192439 IP 192.168.0.180.1153 > 61.220.62.131.5000: . ack 129 win 65535

Figure 17: Lines from a Transmission Control Protocol Trace

Using the commercial MMOG game Ragnarok Online, the authors were able to

take multi-hour TCP traces. Each trace was collected from the network connected to the

game client. The data collected incorporated different network conditions and different

bots along with different players possessing a range of MMOG experience levels. A

summary of the TCP traces are shown in Table 5.

 56

Table 5: Transmission Control Protocol Traces Summary (Chen, 2009)

After reviewing the article, we saw an opportunity to confirm their results while

developing an improved method. We also noted the use of long, multi-hour, traces for

their analysis and hypothesized that through the use of Artificial Neural Networks

(ANNs) we could obtain similar results with less data. The article contains a web address

to their freely accessible research data, and since we were also interested in obtaining

actual data from an MMOG, we decided to use this data for our research. Unfortunately,

upon familiarizing ourselves with the data, we realized the data was incomplete. While

corresponding with Chen, we were able to obtain some of the incomplete data, but parts

of the original data have been permanently lost.

Concerned with the amount of time and data required to identify bots, we decided

to explore using traces observed over a shorter time with other analytical methods. We

also wanted to look at the effectiveness of our hybrid GRNN versus other ANNs such as

a Feed Forward Neural Network (FFNN), a standard GRNN, and a Probabilistic Neural

Network (PNN). Using most of the raw data from Chen et al. (2009) we began by

 57

breaking each trace into five minute chunks and collected statistics for each five minute

period. We felt that five minutes was a short amount of time in comparison to an hour or

more and should contain enough packets for our approach.

4.3.1. Original TCP Analysis

Chen et al. (2009) propose four different methods to determine if the human and

bot playing patterns are statistically different. The first method is to examine the timing

of client commands relative to the arrival time of the most recent server data packet.

Figure 18 shows representative histograms of the interarrival times. Figure 18a and

Figure 18b are from players, while Figure 18c and Figure 18d are from bots. It is noted

that players show randomness in these interarrival times, while bot interarrival times

indicate a triggering mechanism since there are evenly spaced peaks in the bots

histogram. Due to this triggering mechanism, they suggest simultaneous testing of

multimodality and regularity. Multimodality tests are looking for multiple peaks in the

histogram of client response times. Regularity tests are looking for response times in

multiples of a certain value. As shown in Figure 19a, when classifying a bot using this

technique there is a maximum 95% correct rate. With an increase in client packets, there

is an increased false positive rate and a decreased false negative rate.

The second method is to observe the traffic burstiness of the packet arrival

process. Traffic burstiness is the variability of packet counts sent in successive order. It

is an indicator of how traffic fluctuates over time. The idea is that since there is a

periodicity to bot traffic, the burstiness should be smoother when compared to human

players. The authors note that bot traffic burstiness shows an initial falling trend and then

a rising trend. Using this idea, they analyze the trace looking for this trend. As seen in

 58

Figure 19b, when classifying a bot using this technique there is a maximum 95% correct

rate. With an increase in trace time, there is a rapid decrease in the false positive rate and

a small decrease in the false negative rate

Figure 18: Histogram of client response times shorter than 0.5 seconds (Chen, 2009)

The third method, like the second method, uses traffic burstiness. The authors

note the ratio of client burstiness versus the server burstiness is less than one for bots and

greater than one for players. Therefore, they look for this in burstiness magnitude. As

seen in Figure 19c, when classifying a bot using this technique there is a maximum 75%

correct rate. There is a constant false positive rate of 40% and a constant false negative

rate of 10%.

 59

Figure 19: Evaluation results for the proposed decision schemes with different input
size (Chen, 2009)

The fourth method is to identify particular patterns in human behavior caused by

sensitivity to network conditions. The hypothesis is that human players subconsciously

adapt to network delay. Therefore, we expect a negative correlation between the round

trip times and the packet rate. As seen in Figure 19d when classifying a bot using this

technique, there is a maximum 80% correct rate. The false positive rate decreases as the

number of round trip time samples increase, while the false negative rate remains about

the same.

 60

Using just the command timing and burstiness trend methods, the authors also

investigate an integrated approach, where they apply both methods simultaneously. They

used a conservative approach where both methods needed to agree for bot detection and a

progressive approach where only one method had to identify a bot. Figure 20, shows that

the conservative approach has an 80% correct detection rate with a low false positive rate

of around 1%. The correct detection rate increases to around 95% after 20,000 client

packets. The progressive approach starts and maintains around a 95% correct detection

rate, but has a high false positive rate of about 40%.

Figure 20: Evaluation results for the integrated schemes (Chen, 2009)

This analysis is a good initial start, but has some immediate limitations. The data

was collected solely from one MMOG. The observations used to identify trends and

patterns in the packet traces could be MMOG specific. The same idea goes to the bots.

Only two bot progms were tested, and therefore the packet patterns may be associated

with just those two bots. The results are also dependent on how many client packets you

 61

have to analyze. Looking at the raw data, to get the 20,000 client packets we would need

over an hour long packet trace. If this method was used to classify bots, a lot of time and

resources would need to be used to collect an hour’s worth of TCP packets from each

player to be analyzed.

4.3.2. Initial TCP Analysis with Artificial Neural Networks

To set up the data for our analysis, traces are broken into five minute sections and

then features are collected and calculated for each of the five minute traces. We

arbitrarily decided on using five minute traces. We feel this should be a sufficient

amount of time since it contains around 1500 client and server packets total. Thus, it

should have a sufficient number of observations to determine the mean and variance we

are looking for to characterize our features. Longer or shorter traces may also work well.

As seen in Table 6, ten numeric features and five binary features were chosen to

represent the data. The numeric features were chosen since they were referenced in the

article by Chen et al. (2009). They referenced the distributions of the response times and

the interarrival rates. We use the mean and variance to represent these distributions. The

last four features were chosen since we hypothesized that a player would tire after a time

playing, while a bot would remain consistent. The authors also noted that there was a

change in servers every time a player changed zones within the game. Therefore, we

added our first binary variable to identify if there was a server change. There were 143

player observations and 726 bot observations.

We separated the data using a simple hold out method. It is pessimistically biased

(Kuncheva, 2004), and compared to other methods of training the data such as cross-

validation or jackknife, it requires less computation. We decided to split the data into

 62

60% training, 20% testing, and 20% validation sets. Results are reported using Apparent

Classification Accuracy (ACA) since we are concerned with finding both bots and

players.

Table 6: Feature Overview of Initial Transmission Control Protocol Data from
Ragnarok Online

Bot
#features #observations ratio of 0/1

15 869 143/726

column # features Data types min max
1 Mean client response Numeric 0.0339 0.7513
2 variance client response Numeric 0.0013 0.5115
3 mean server response Numeric 0.0967 1.6558
4 variance server response Numeric 0.0098 406.9200
5 mean client interarrival rate Numeric 0.3932 5.6178
6 variance client interarrival rate Numeric 0.0154 398.6100
7 mean server interarrival rate Numeric 0.1927 6.1613
8 variance server interarrival rate Numeric 0.0101 175.0200
9 packets sent from client to server Numeric 0.1807 2.5442
10 packets sent from server to client Numeric 0.1636 5.1918
11 change zone Binary 0 1
12 trace 0-1 hr Binary 0 1
13 trace 1-2.5 hr Binary 0 1
14 trace 2.5-4 hr Binary 0 1
15 trace > 4 hr Binary 0 1

16 human (1) or bot (2)
Binary
(converted to 0,1) 1 2

We used a hybrid GRNN method to model the data, separately processing the

binary features using a Hamming distance GRNN and the numeric data using a Euclidian

distance GRNN. To combine the two separate models, we created a convex combination

of the Hamming distance GRNN with the Euclidian distance GRNN, as seen in equation

(50), and then developed confusion matrices. We optimized the parameters for both

individual GRNNs and the convex combination parameter to maximize ACA. We also

 63

calculated confusion matrices using standard FFNN, GRNN, and PNN for comparison.

We used MATLAB ANN functions to calculate the comparison confusion matrices.

The results for the hybrid GRNN, along with GRNNs for both the binary and

numeric data, can be seen in Table 7. The majority of the classification information is

obtained from the binary model, since the binary and the hybrid GRNN confusion

matrices are almost identical. Note that the hybrid GRNN is slightly better than the

binary GRNN, indicating some useful classification information was gained from the

numeric part. The increase in ACA may not be statistically significant, but with only a

single replication, we can’t perform a t-test to evaluate the significance. Also, this

information is highly dependent on the placement of the bot cut-off. Figure 21 is the

ROC curve generated from the hybrid GRNN. The large dot on the graph identifies the

current cut-off. The graph shows that the cut-off is ideal for identifying bots. It

maximizes the probability of bot detection, with the lowest chance of identifying false

bots. It also shows that if we change the cut-off to reduce the number of false bots

detected, we will dramatically reduce the number of bots detected.

Table 7: Hybrid confusion matrices for Bot detection
SIM TRUE

 Hybrid Binary Numeric
 player bot player bot player bot
player 26 4 24 5 24 58
bot 2 142 4 141 4 88
ACA 0.9655 0.9843 0.6437

Part of this analysis was also to determine the effectiveness of the hybrid GRNN.

Table 8 shows a comparison between FFNN, GRNN, PNN, and the hybrid GRNN. We

can see that the hybrid GRNN has the best ACA over all. Even though the FFNN does

 64

correctly identify three more bots than the hybrid GRNN, the hybrid GRNN correctly

identifies five more players.

Figure 21: ROC curve of Hybrid GRNN for Bot detection

Table 8: Comparative Confusion Matrices for Bot Detection
SIM TRUE

 FFNN GRNN PNN hybrid GRNN
 player bot player bot player bot player bot
player 21 1 25 5 24 7 26 4
bot 7 145 3 141 4 139 2 142
ACA 0.9540 0.9540 0.9368 0.9655

4.3.3. Second TCP Analysis with Artificial Neural Networks

After we completed our first analysis we obtained more bot data. Since this

imbalanced our data even more and we were interested in testing our methodology for an

even larger and more imbalanced data set, we performed the analysis a second time with

this larger bot data set. Table 9 is a summary of the increased data set. Note we switched

 65

the labeling for the response to make the binary 1 represent the smaller category

(players), which is also the category of interest.

Table 9: Feature Overview of Second Transmission Control Protocol Data from
Ragnarok Online

Bot
#features #observations ratio of 0/1

15 1886 1743/143

column # features Data types min max
1 Mean client response Numeric 0.0158 1.9543
2 variance client response Numeric 0.0002 7.3513
3 mean server response Numeric 0.0967 3.2598
4 variance server response Numeric 0.0098 406.9200
5 mean client interarrival rate Numeric 0.3932 79.3510
6 variance client interarrival rate Numeric 0.0154 18327.0000
7 mean server interarrival rate Numeric 0.1927 122.3800
8 variance server interarrival rate Numeric 0.0101 44729.0000
9 packets sent from client to server Numeric 0.0211 2.5442
10 packets sent from server to client Numeric 0.0127 5.1918
11 change zone Binary 0 1
12 trace 0-1 hr Binary 0 1
13 trace 1-2.5 hr Binary 0 1
14 trace 2.5-4 hr Binary 0 1
15 trace > 4 hr Binary 0 1
16 human (1) or bot (0) Binary 0 1

We chose to alter this analysis by using the ‘leave-one-out’ validation method

since we are setting up to perform a similar analysis with a much larger data set that is

severely imbalanced. In addition, we wanted to focus on the category that has the fewer

number of observations, so we selected F-Measure for players as our performance

measure. For comparison we also included ACA and F-Measure for bots.

Looking at Table 10 it can be seen when looking at F-Measure for players,

labeled FM (player), that the binary GRNN did not identify any players. This could be

 66

due to the extreme imbalance of observations combined with the difficulty in using

binary data for discrimination. The numeric GRNN identified 96 of the 143 players.

When combined into our hybrid GRNN, we can see that it performed better than the

numeric GRNN alone. This indicates that even though the binary GRNN did not identify

any players on its own, it does add value to our hybrid GRNN. When looking at the other

performance measures, our hybrid GRNN did better than both the binary GRNN and the

numeric GRNN separately.

Table 10: Hybrid Confusion Matrices for Bot Detection
SIM TRUE

 Binary GRNN Numeric GRNN Hybrid GRNN
 bot player bot player bot player

bot 1743 143 1737 47 1738 40
player 0 0 6 96 5 103

FM(player) 0 0.8142 0.8207

bot 1743 143 1739 50 1740 42
player 0 0 4 93 3 101

FM(bot) 0.9606 0.9867 0.9872

bot 1743 143 1737 47 1738 40
player 0 0 6 96 5 103
ACA 0.9242 0.9751 0.9761

We also compare the results of our hybrid GRNN to PNN, regular GRNN and

FFNN, as in Section 4.3.2. Table 11 shows the comparison with other ANNs. Using F-

Measure for players we can see that our hybrid GRNN does better than FFNN, and

comparable to PNN, but not as well the standard GRNN. Using the F-Measure for bots

and ACA, our hybrid GRNN performs better than FFNN and PNN, but falls a little short

of the standard GRNN (within 0.001).

 67

Table 11: Comparative Confusion Matrices for Bot Detection
SIM TRUE

 PNN GRNN FFNN Hybrid GRNN
 bot player bot player bot player bot player

bot 1731 34 1734 34 1707 126 1738 40
player 12 109 9 109 36 17 5 103

FM(player) 0.8259 0.8352 0.1735 0.8207

bot 1733 36 1736 36 1707 126 1740 42
player 10 107 7 107 36 17 3 101

FM(bot) 0.9869 0.9878 0.9547 0.9872

bot 1731 34 1734 34 1707 126 1738 40
player 12 109 9 109 36 17 5 103
ACA 0.9756 0.9772 0.9141 0.9761

For large scale data sets, the performance measure is not the only factor to

consider. Processing time can be an important issue. For both the GRNN and the PNN,

determining the spread parameter takes up the majority of the processing time. While

with FFNN, it may take a long time to identify an optimal solution. In Table 12, we can

see the time in seconds for determining the models used in Table 11. The table is only

one observation, but gives an idea of how long this process takes. The search for spreads

for the PNN and all of the GRNNs were ranged from 0.1 to 1 in increments of 0.1 while

the FFNN was calculated in MATLAB using the default goal of 0 and only 50 epochs.

The FFNN was repeated until a model that achieved the goal was reached. The hybrid

GRNN did not employ any parallel processing, i.e. the binary model was calculated, then

the numeric model was calculated, then they were combined. We can see the PNN,

GRNN and FFNN all take about the same amount of time to compute, while our hybrid

GRNN was much faster, approximately one eighth of the time.

 68

Table 12: Times for Creating Confusion Matrices for Bot Detection
ANN Method Time is Seconds
PNN 8778.4700
GRNN 8666.8721
FFNN 8076.7130
Hybrid GRNN 1114.2307

4.3.4. Conclusion

Our initial experiment resulted in showing ANNs could easily be implemented by

a game company and within a few minutes a player could be identified as a bot or a

human accurately. In fact, looking at our hybrid GRNN confusion matrix, 99% of the

bots were identified correctly, with only 6% of the players falsely identified as bots.

Using the ROC curve in Figure 21, we can adjust these results to increase the number of

identified bots or decrease the number of false positives. We can also see that the hybrid

GRNN method has the best overall performance in the initial data set.

The results for the second experiment are similar to the initial experiment, except

our hybrid GRNN narrowly failed to outperform the standard GRNN for all three

performance measures. The area where it did outperform the other techniques is in the

amount of time it required to complete. The time performance of our hybrid GRNN was

7.8 times faster than the standard GRNN, bringing 2.4 hours processing time down to

about 18 minutes. When compared to the slight decrease in classification performance,

the increase in time performance could be critical. We also take into account that this

modeling technique is intended to be used on extremely large datasets, around ten times

the size of the second bot data set.

 69

4.4. Summary

This chapter introduces our hybrid GRNN technique. Our technique leverages the

concept of modeling mixed data types by using individualized GRNNs and then

combining them back using a convex combination of the individual GRNNs. It reviews

work by Chen et al. (2009) on bot detection from TCP traces and uses the same data as an

example application of our technique. The example is based on a mixed data set

containing binary and numeric data, but the technique is not restricted to only numeric

and binary data.

 70

V. Spread Estimation for Classification with Large Data Sets

The use of a Generalized Regression Neural Network (GRNN) requires a spread

parameter. The spread is a smoothing parameter for the Gaussian distributions within the

Parzen Window. Choosing a proper spread is an important part of developing a GRNN

model. To identify an optimal spread for the model, it is best to identify the smallest

parameter that gives the best selected classification performance measure. Using the

smallest spread parameter within a desired performance range is generally considered

more representative since it should reduce the number of false classifications. For our

model, the spread is set for both calculating the model’s performance measure and

identifying a feature for removal, and is recalculated each time a feature is removed,

since the training data and possibly the performance measure, changes with the removal

of a feature.

The standard method of finding a spread is to input different spreads and select

the spread associated with the best performing model. Since the GRNN model needs to

be developed multiple times with different spread parameters for comparison, this

process can be time consuming. The addition of very large data sets with features that

have large ranges can complicate this even further by taking longer to calculate and

requiring more spread parameters to check. Another problem that can arise when using

the standard method and performance measures like F-Measure, is that all of the

performance measure results are equal. This makes it difficult to compare the results

from different parameters when there may actually be a difference between the outputs.

 71

To combat this problem we tried using common alternatives, but felt the results

were not comparable with the standard method. Therefore, we developed a method that

attempts to identify a spread which adequately represents the distribution of the data

within each category of the training set. This method is faster than a standard exhaustive

search, and results in comparable spreads.

This chapter begins with a background review of different spread finding

methods. We then present the methodology for our new spread finding method. The

next section compares our method to the reviewed methods using multiple data sets. The

last section provides a summary of the chapter.

5.1. Background

The standard method of finding a spread is to test different spreads and choose the

one that gives the model the best performance when evaluating the test set. With the data

standardized, we only need one spread for all classes. To be thorough when identifying

the best spread, users typically cycle through values from 0.1 to a user specified cap (i.e.

1) with a preferred step size of 0.1. GRNN models are fairly robust (Specht, 1990) to

spread parameters so a step size of 0.1 should not adversely affect the model, especially if

the data has been standardized. Standardizing will help compensate for data with

extremely small variances or extremely large variances. When selecting the optimal

spread, there may be multiple spread values with the same value of the performance

measure. The best performance measure relative to the test set, with the smallest spread

should be chosen.

The standard spread finding method is effective and quick for smaller data sets,

but with large data sets, it can be very time consuming. An alternative to spending long

 72

run times evaluating different spread parameters is using a heuristic method. According

to class notes (Bauer, 2008), there exists a spread heuristic for finding spread for radial

basis functions which are similar to GRNNs in that they both use Parzen Windows to

develop an underlying distribution. Equation (51) shows how to use the size of the

training set (M) and the number of features (N) to identify the spread heuristic.

1

1

2 NM
 (51)

Another quick heuristic method to selecting spread is to use the standard deviation

of the training set as the spread. There are a variety of ways to calculate such a standard

deviation to characterize the spread of the underlying distribution. Some suggestions

follow

 The standard deviation can be calculated across all training points with a
single mean.

 The training set can be divided into categories and the standard deviation
within the categories can be averaged across categories.

 The training set can be divided into multiple centroids and the standard
deviation within the centroids can be calculated and then the standard
deviation across all centroids can be averaged.

Both using the spread heuristic and standard deviation are extremely fast ways of

identifying a spread parameter compared to the standard method. This is because they do

not require generating multiple GRNNs. Our method is similar in that aspect, but differs

in the idea that our method focuses on adequately representing the distribution of data

within each category instead of the recommended training set statistics.

 73

5.2. Methodology

Our research investigates data from Massive Multiplayer Online Games

(MMOGs) which can be extremely large data sets. Therefore, to reduce the time it takes

to model this data, we develop a method to identify a spread that allows the model to

adequately cover each classification space. As outlined in Figure 22, we first separate the

training data set into its different categories and then identify clusters within each

category. We use X-means (Pelleg, 2000) to identify clusters for each category for our

research. K-means could also be used to identify clusters, but it requires the analyst to

specify the number of clusters, a priori. We then compute the centroid for each cluster

and assign each point within the categories to its nearest centroid. Then for each point

assigned to the centroid we find the distance to its nearest neighbor within that centroid.

We then find the average nearest neighbors distance for the entire training set and half it.

This gives us a value for that covers the majority of the category space.

Figure 22: Flow Chart of Faster Spread Finding For Extremely Large Data Sets

5.3. Multiple Data Sets Comparisons

To test the effectiveness of our heuristic when compared to the standard

exhaustive approach, we looked at different data sets and different sizes of data from our

 74

largest data set. Our goal was to find a fast technique that gave us comparable results to

exhaustive search. We compared performance against the standard technique using both

a GRNN employing Euclidian distance and a GRNN using Hamming distance.

5.3.1. Data Overview

We used three different data sets to test the different spread finding techniques,

initially looking at comparisons with a GRNN employing Euclidian distance. They are

the Wisconsin Breast Cancer (Cancer) data outlined in section 3.3.1, the Bot detection

(Bot) data outlined in section 4.3, and the EverQuest II (EQ2) data outlined in section

6.1. Cancer represents a small data set, since it only has 16 features and 683

observations. Bot represents a larger dataset with both binary and numeric data. It has

five binary features and ten numeric features with 1,886 observations. We also looked

individually at both the binary and numeric features of the Bot data, labeled Bot-bin and

Bot-num respectively, along with all features combined. EQ2 represents a very large

data set with both binary and numeric data along with severely imbalanced categories. It

has seven binary features and 20 numeric features with 21,377 observations where the

category ratio is 216/21,161. We looked individually at both the binary and numeric data

for EQ2, labeled EQ2-bin and EQ2-norm respectively, along with a full feature set.

Since we are also interested in determining if there was an effect to the spread finding

technique with a reduced feature set; we randomly sampled the EQ2 feature set to look at

¼, ½, and ¾ of the features labeled EQ2-1/4, EQ2-1/2, and EQ2-3/4 respectively.

For our second set of comparisons we looked at a GRNN employing Hamming

distance. We used five different subsets of the EQ2 data. The first four sets are

categorical data points converted into binary by creating a feature for each category type.

 75

The fifth set is a group of binary features from the original set. Table 13 lists the binary

sets with the number of features and observations.

Table 13: EQ2 data sets with the number of features and observations
Data Set Features Observations
EQ2-1 16 21377
EQ2-2 41 21377
EQ2-3 14 21377
EQ2-4 13 21377
EQ2-5 24 21377

5.3.2. Analysis

We performed comparisons using both an exhaustive search optimizing ACA

(ACA) and an exhaustive search optimizing F-Measure (F-M) with results from our

heuristic (OH), the notes heuristic (NH) in equation (51), standard deviation of all data

(STDEV), average standard deviation between categories (CAT STDEV), and average

standard deviation within centroids between categories (CENT STDEV).

Table 14 displays the identified spreads for each data set for the different spread

finding methods. All methods are compared to ACA and F-M. To compare techniques

using ACA, we bolded the result from the technique with the closest spread to the ACA

spread. We see that none of the techniques did a great job, but if we placed a minimum

of 0.1 on all the techniques, similar to the standard technique, OH would be the best

match for four data sets and a very close second for another (OH 0.1 difference from Bot

goal while CENT STDEV 0.09 difference from Bot goal). For the last five data sets none

of the techniques were close. We also looked at using F-M instead of ACA. In Table 14

we highlighted in grey the spread of the closest technique to the spread of F-M. These

results show six of ten data sets where the OH spread was the closest to the goal F-M.

 76

Similarly as shown for ACA, if we place a minimum on the spread, OH is the best match

for two additional data sets and a close second for another.

Table 14: Spreads by Collection Type and Data Set

Data set ACA F-M OH NH STDEV
CAT

STDEV
CENT

STDEV
Cancer 0.8 0.8 0.9373 0.6368 1.0007 1.0007 0.4877
Bot-bin 0.1 0.1 0.0003 0.1926 0.3688 0.3688 0.2266
Bot-norm 0.1 0.1 0.0696 0.4389 1.0003 1.0003 0.5734
Bot 0.2 0.2 0.0915 0.5775 1.0003 1.0003 0.2973
EQ2-bin 0.1 0.1 0.0006 0.2180 0.3465 0.3465 0.0704
EQ2-norm 2 0.4 0.4176 0.5867 1.0000 1.0000 0.9374
EQ2 2.1 0.1 0.5935 0.6737 1.0000 1.0000 0.9642
EQ2-1/4 1.8 0.3 0.0688 0.2180 1.0000 1.0000 0.4319
EQ2-1/2 1.8 0.1 0.2036 0.4669 1.0000 1.0000 0.7277
EQ2-3/4 2 0.1 0.4090 0.6018 1.0000 1.0000 0.6846

We are not just worried about how close we are to the exhaustive search spread;

we are also concerned with the time it takes to run the spread finding technique. Looking

at Table 15, we see that using NH is by far the fastest method. Table 16 displays the

fraction of time for each technique compared to the exhaustive search.

Table 15: Spread Collection Times by Collection Type and Data Set

Exhaustive

Search OH NH STDEV
CAT

STDEV
CENT

STDEV
Cancer 76.3427 30.2516 0.0260 0.1069 0.0533 26.8458
Bot-bin 484.6531 73.9003 0.0505 0.0979 0.0519 14.3626
Bot-norm 437.3439 71.8993 0.0506 0.0990 0.0575 67.7969
Bot 537.0606 110.4224 0.0257 0.1233 0.2554 106.4531
EQ2-bin 41481.9545 1984.3360 0.0434 0.1388 0.0995 265.6507
EQ2-norm 81544.5572 2650.7080 0.0262 0.2041 0.7308 2582.6680
EQ2 74930.9486 3154.2850 0.0262 0.2205 0.2651 3060.4550
EQ2-1/4 42012.5673 1010.3420 0.0260 0.1598 0.1102 903.0723
EQ2-1/2 65508.8103 2164.7110 0.0261 0.1792 0.2839 2088.0550
EQ2-3/4 84648.9670 3031.4750 0.0264 0.1913 0.3369 2962.6040

 77

Table 16: Spread Collection Times Relative to Exhaustive Search Collection Time
by Collection Type and Data Set

 OH NH STDEV CAT STDEV CENT STDEV
Cancer 3.9626E-01 3.4000E-04 1.4010E-03 6.9900E-04 3.5165E-01
Bot-bin 1.5248E-01 1.0400E-04 2.0200E-04 1.0700E-04 2.9635E-02
Bot-norm 1.6440E-01 1.1600E-04 2.2600E-04 1.3100E-04 1.5502E-01
Bot 2.0561E-01 4.7900E-05 2.3000E-04 4.7500E-04 1.9821E-01
EQ2-bin 4.7836E-02 1.0500E-06 3.3500E-06 2.4000E-06 6.4040E-03
EQ2-norm 3.2506E-02 3.2100E-07 2.5000E-06 8.9600E-06 3.1672E-02
EQ2 4.2096E-02 3.4900E-07 2.9400E-06 3.5400E-06 4.0844E-02
EQ2-1/4 2.4049E-02 6.2000E-07 3.8000E-06 2.6200E-06 2.1495E-02
EQ2-1/2 3.3045E-02 3.9900E-07 2.7400E-06 4.3300E-06 3.1874E-02
EQ2-3/4 3.5812E-02 3.1100E-07 2.2600E-06 3.9800E-06 3.4999E-02

When focusing on just the binary data we only compared OH and NH to the F-M.

We use F-M since one of the categories is extremely small compared to the other and we

are interested in identifying these observations. Table 17 displays the spread values

determined by standard F-M, OH, and NH. It also contains computing times for both OH

and F-M. It can be seen that OH and F-M are comparable in their spreads, while NH

attempts to use a larger value. The difference between F-M and OH is primarily because

they have different minimum allowed values. If they were both set at 0.1, then they

would be equal. For the timing, we can again see that OH is a much faster method

averaging a 95% reduction rate.

Table 17: Spread collection times relative to normal collection time along with
spread values

Data Set F-M OH NH Time for F- Measure Time for OH
EQ2-1 0.1 0.001 0.5135 84750 3777
EQ2-2 0.1 0.001 0.7710 126400 5900
EQ2-3 0.1 0.001 0.4669 78839 5480
EQ2-4 0.1 0.003 0.4403 99865 1278
EQ2-5 0.1 0.001 0.6413 103660 6690

 78

5.3.3. Conclusion

Our analysis results clearly show that NH is a very fast method for determining

spread. When compared to exhaustive search, it has up to seven orders of magnitude in

reduction. If speed was the sole factor it would be the method of choice. However, when

considering accuracy of selecting the optimal spread values, our heuristic does better. In

terms of processing time it shows a reduction of up to two orders of magnitude, and with

the application of a minimum value it consistently achieves the closest spread to the

exhaustive F-Measure spread search. Even though we have stated that GRNNs are fairly

robust to spread parameters, large deviations from an optimal spread can severely affect

the GRNN output. Therefore, accuracy is important and should be considered along with

the speed of obtaining a spread value.

Note that the EQ2 data has 27 features, and for our feature reduction technique,

we need to determine the spread 27 times. Therefore, it would take about 23.5 days of

computing just to determine the spreads using the exhaustive method, while it would take

about one day to compute the spreads using our heuristic.

Noting that the spread values obtained are not exact with our heuristic, a possible

variation to identify a spread would be a heuristic to identify a better set of bounds for an

exhaustive spread search. Since the heuristics are not bounds nor seem to have any

patterns that may indicate how far the true value may be, there is no easy way to modify

the equation to reduce the bounds on the exhaustive search. An idea that may work is to

test the initial heuristic value and values just outside the heuristic to identify a search

direction where the test performance measure improves. Thus continuing testing new

spreads in the search direction until the performance measure fails to improve. This

 79

method would not be as fast as the heuristic alone, but would be faster than the

exhaustive search. This method, would potentially result in a better spread estimate than

the heuristic, but possibly not identifying the best spread parameter as in a full exhaustive

search.

5.4. Summary

This chapter introduces a new spread finding technique. Our heuristic technique

attempts to identify a spread that will allow the training data to cover the space associated

with each category of response. Our technique is not exact when compared to typical

exhaustive searches, but is more accurate than other suggested techniques. Our technique

runs faster than exhaustive searches as seen in our example, and will dramatically reduce

the running time of our feature reduction technique that requires finding a spread many

times.

A possible variation for future work was suggested in 5.3.3. It suggested using

the heuristic as an initial spread and using it along with spreads around it to identify a

search direction and then use exhaustive search from there to identify a local optimal

spread.

 80

VI. Analysis of ‘Gold Farmers’ in EverQuest II Using Feature Selection and Hybrid

Generalized Regression Neural Networks

In our search to identify research involving classification of players in Massive

Multiplayer Online Games (MMOGs), we discovered the Virtual World Exploratorium

(VWE). Through a previous agreement with Sony Entertainment, this group has access

to massive amounts of data collected from EverQuest II. Fortunately, we were able to

contact researchers in this group who allowed us to work with them and apply our full

hybrid Generalized Regression Neural Network (GRNN) technique to their data. The

subgroup we worked with focuses on the identification of gold farmers. Gold farming

refers to the practice of trading virtual in-game resources such as currency, items, and

avatars for real-world currency. Gold farming is considered a deviant behavior for three

main reasons (Keegan, 2010). First, in game economies are carefully developed by the

game developers and gold farmers upset the balance of these economies. Second, gold

farmer’s activities often adversely affect the playing experience of other players. Third,

gold farming assigns a real-world value to virtual property bringing with it questions

about property rights and taxation along with criminal activities such as money

laundering.

We felt identifying gold farmers using the EverQuest II data was a good

opportunity to apply our full technique. This is because the data is actual MMOG data

with associated truth data and identifying gold farmers is identifying deviant activity.

The process of identifying other deviant activities should have similar properties and

 81

challenges; such as an extremely unbalanced proportion between deviant (the category of

interest) players and all other players.

This chapter is divided into five sections. The first section is a brief introduction

to the analysis. The second section is a description of the EverQuest II data. This will

include a description of the original size of the data and the subsequent reduction of the

data being analyzed. The third section highlights many of the problems associated with

working with this data. The fourth section focuses on the analysis of the EverQuest II

data using our hybrid GRNN with our feature selection and spread finding heuristic. The

fifth and final section contains the conclusion to the chapter.

6.1. Data Description

Anonymized database dumps were collected from Sony Online Entertainment’s

MMOG EverQuest II. This data contains attribute data on individual characters. The full

data set is approximately 30 terabytes. Using primarily information within the character

attributes we were able to obtain 2.1 million observations with 21 thousand identified

gold farmers. The gold farmers were players whose accounts had been canceled with

reasons stating bot, farmer, launderer or spammer. The reasons were manually input into

the database so many accounts had to be individually checked. The use of 2.1 million

observations can be extremely taxing on both memory and CPU time, so a one percent

random sampling of the data was used for our analysis. This sampling maintained the

proportion of gold farmer and non-gold farmer. Table 18 is an overview of the data used

where category ‘0’ is a normal player and category ‘1’ is a gold farmer.

 82

Table 18: Feature Overview of the 1% Sample Data Collected From EverQuest II
1% EQ2
Data #features #observations ratio of 0/1
 27 21377 21161/216

column # features Data types min max
1 RACE Categorical 0 15
2 CLASS_ID Categorical 0 40
3 GENDER Binary 0 1
4 BANK_COIN Integer 0 721130000
5 PERSONAL MONEY Integer 0 458990000
6 CHAR_LEVEL Integer 1 70
7 ARTISAN_CLASS_ID Categorical 0 13
8 TRADESKILL_EXPERIENCE Integer 0 40673
9 TRADESKILL_LEVEL Integer 1 70
10 GUILD_BIN Binary 0 1
11 LAST_NAME_BIN Binary 0 1
12 NPC_KILLS Integer 0 872120
13 TOTAL_DEATHS Integer 0 2692
14 TOTAL_QUESTS_COMPLETED Integer 0 1771
15 CURRENT_QUESTS_ACTIVE Integer 0 85
16 BIO_TEXT_BIN Binary 0 1
17 STAT_ITEMS_CRAFTED Integer 0 164420
18 AGE_SECONDS Integer 0 29977000
19 STAT_RECIPES_KNOWN Integer 0 3889
20 CITY_ALIGNMENT Categorical 0 2
21 ACTIVE_GUILD Binary 0 1
22 ACTIVE_GLOBAL_PERSONA Binary 0 1
23 PVP_DEATHS Integer 0 1517
24 PVP_TOTAL_KILLS Integer 0 3085
25 PVP Binary 0 1
26 USER_GENDER Binary 1 3
27 COUNTRY (converted to regions) Categorical 1 25

28
FARMER (PLAYER = 0,
FARMER = 1) Binary 0 1

 83

For this data, all integers were standardized, potentially resulting in non-integer

values. The binary numbers were not standardized. The categorical data was converted

to binary and feature reduction was performed to reduce the number of features. To

convert categorical data to binary, each unique observation was converted to a binary

feature. Therefore, a feature like CLASS_ID which has 41 unique observations, was

converted into 41 binary features.

For validation purposes, we generated two extra sets from the original data. The

first set, labeled (500/500), contains 1,000 observations consisting of 500 gold farmers

and 500 non-gold farmers. The original ratio does not need to be maintained since this is

just a check of the model we built, and does not affect parameters or how well the model

performs. The second set, labeled (5%), is a random sample of five percent of the data.

This set retains the original ratio, so there are 106,879 observations with 1,076 gold

farmers and 105,803 non-gold farmers.

6.2. Issues Relating to Large Data Set Sets

For our research, we were fortunate to gain access to the EverQuest II data. After

the excitement and elation subsided from getting to work with the data, the realization

that it added a lot more work set in. Our first step was moving the small, 2.1 million

observation, subset of data from the server where all the data is stored to a local desktop

personal computer (PC). After we moved the data, we were able to load it into

MATLAB running on a Windows PC with 4 Gigabytes of RAM. Unfortunately, after we

loaded all the data into a table within MATLAB, we were unable to perform any

mathematical operations upon it. The data was too large and even the simplest operation

would cause the program to run out of memory. We attempted different methods to

 84

allow us to maintain the integrity of the whole data set, such as breaking the data into

smaller tables and storing them on the hard drive and swapping them out to work on them

separately and performing calculations on each cell individually. All of the methods we

tried were taxing on the computer system and performed very slowly. Therefore, we

decided to use a small random sample (maintaining the ratio of categories) from the

original data set to do our analysis.

Even with one percent of the original data, the analysis was very time consuming.

To speed the analysis up we focused on process and algorithmic improvements,

optimizing code, and application of High Performance Computers (HPCs). We modified

our analysis in two major ways. The first was to modify the application to use our spread

heuristic discussed in Chapter 5. The repetitive nature of recalculating spreads can

consume an exorbitant amount of time. With our spread heuristic, we drastically reduced

the time required for each feature reduction step. The second way we modified our

analysis was to perform a separate feature reduction on each set of binary features

developed from our categorical features. When we convert our categorical data to binary

data, we increase the number of binary features from 8 to 108 features. Performing

feature selection on all 108 features together would take a significant amount of

processing time, while performing the feature reduction on each of the categorical data

separately, dramatically reduced the number of binary features in our full model in a

timely manner.

The original coded algorithm was developed and tested using a very small data

set. Therefore, the cleanliness and efficiency of the code was not an issue. When a large

data set was employed we realized that we needed to clean up the code by removing

 85

unnecessary calculations and optimize performance by better using MATLAB strengths

in matrix multiplication. We also looked at how matrices were multiplied in order to

minimize the number of operations performed.

Finally, we moved most of our processing to HPCs. Leveraging AFITs

relationship with the High Performance Computing Modernization Program (HPCMP),

we were able to run multiple analyses simultaneously to reduce the time required to

finish. With a bit more time, much of the algorithm could be parallelized to leverage the

HPCs more effectively.

Another problem that arose with the application of this data was due to the

imbalance of the categories. With the number of gold farmer observations being so

small, we decided to use the leave-one-out method for our validation technique. This

greatly increased the number of observations and time required to perform the analysis.

Along with the time increase, we had a problem with the model classifying everything as

non-gold farmer. This resulted in very good ACA since 99% of the data was non-gold

farmer, but F-Measure was undefined for gold farmers. Therefore, we need to employ

ROC curves to identify a better cut off and force some gold farmer classifications so we

can discriminate between reduced training sets. Throughout the remainder of this

discussion we use the F-Measure associated with our category of interest, gold farmers.

An additional problem we ran into with the sparse binary data affected the feature

selection technique. The calculated sum of many partial derivative magnitudes were

zero. This was a problem since we needed to identify the minimum sum of the partial

derivative magnitudes and remove the corresponding feature. We solved this problem by

removing all features with a sum of the partial derivative magnitudes equal to zero for

 86

feature selection. The added benefit to this method was that it sped up the feature

reduction algorithm by reducing the number of times it cycles through the loop.

Since we have no knowledge about underlying data structure to specify the

number of clusters, we used X-means to identify the number of clusters and the centriods

within each cluster. This worked fine for our numeric data, but we discovered for the

binary data that some clusters from differing categories had the same centriod. This

created a problem when developing vectors of test points between these clusters, since a

vector cannot be formed using the same point. To combat this problem, when generating

vectors to calculate the summed magnitudes of the partial derivatives, we checked to see

if the starting centroid and the ending centroid were the same. If they were the same, we

would skip generating the vector. However, our fix could create a situation where no

vector was generated between the two categories. Therefore, to guarantee at least one

vector is created between each pair of categories, we identify a minimum of two distinct

centroids within each category. To make sure we found two or more centroids for each

category, we tested the number of centriods X-means identified for a category. If it only

found one centroid, we abandoned it and used K-means, with K = 2, to identify two

centroids. As stated earlier, this guaranteed a vector was developed between each pair of

categories.

6.3. Analysis

For our analysis we used the leave-one-out validation method. This is because

there are so few actual gold farmer observations, and we decided that all 216

observations were too important to eliminate any. We used this validation method every

time we evaluated the performance of a model. We focus on F-Measure as our

 87

performance measure. We chose this over our other performance measures because

ACA, APER, and maximizing/minimizing confusion matrix values are too heavily

swayed by the disproportionate data. Therefore they would not be good representations

of the performance of the model. Both recall and precision would be adequate choices

for performance measures, but since they have slightly different focuses, neither is best in

a general performance measure. Therefore, we decided to use F-Measure since it is a

balance of both recall and precision, as seen in Figure 11.

We began our examination with the binary data. We broke this information into

five separate data sets (labeled EQ2-B1 through EQ2-B5) and performed a feature

reduction on each set. After the feature reduction, we combined all the retained features

into a new binary set. Since we frequently obtained zeros for our F-Measure when

examining the feature reduction, we created ROC curves for each cycle through the

feature reduction technique. Figure 23 is the series of ROC curves built for EQ2-B1. For

each cycle the maximum F-Measure is identified relative to the curve, and this is the F-

Measure we used as representative of each set of reduced features. All of the binary

ROC curves are displayed in Appendix B.

Using this maximum F-Measure for the reduced models, we created a table and

graph of retained features versus F-Measure for each of the binary data sets. Table 19

shows the F-Measure relative to the retained features along with the removed features for

each cycle using EQ2-B1 data set, while Figure 24 graphically displays the retained

features relative to the F-Measure. The decision in which reduced model to use is a

balance between the number of features and the accuracy. For all but one of the feature

reductions we chose the smallest set with the maximum F-Measure. For EQ2-B3 we

 88

Figure 23: ROC Curves with F-Measure for EQ2-B1 Feature Reduction Sets.

 89

noted that the maximum F-Measure (0.0551) contained all the features, while the 2nd best

F-Measure (0.0535) only required one feature. Therefore, we chose the second best since

it only reduces the F-Measure by 0.0016, while reducing the set by 23 features. The

shaded cycle in Table 19 represents our selected model for EQ2-B1. Table 20 is a

summary of the F-Measures and Modeled Features for each binary data set. The full

tables and graphs are located in Appendix C.

Table 19: Binary Feature Reduction EQ2-B1
Cycle Removed Feature F-Measure Modeled Features

0 - 0.0406 1-16

1 8 0.0406 1-7,9-16

2 1,5,10,11,12,13,15,16 0.0406 2-4,6,7,9,14

3 3,4,6,7,9 0.0215 2,14

4 14 0.0215 2

5 2 - -

Figure 24: Plot of Retained Features vs. F-Measure for EQ2-B1

Now that we have identified our binary features, we combine them into one data

set and generate our binary model. Using our spread finding technique, we calculate raw

 90

scores for each of the observations to be combined with the raw scores from the numeric

data set.

Table 20: Summary of Feature Reduction for EQ2 Binary Data
Binary Data Set F-Measure Modeled Features

EQ2-B1 0.0406 2-4,6,7,9,14

EQ2-B2 0.0535 24

EQ2-B3 0.0548 1

EQ2-B4 0.0927 1-5,7,10-12

EQ2-B5 0.1485 2,3,5,6,8,10-20,22-24

Similar to the binary data sets, we do a feature selection on the numeric data set.

Table 21 displays the features removed, F-Measure, and the modeled features for each

cycle. Figure 25is the plot of the number of retained features when compared to F-

Measure. Using the table and graph we decide on using nine features (shaded in Table

21) for the numeric model.

Figure 25: Plot of Retained Features vs. F-Measure for Numeric Data Set

 91

Table 21: Numeric Feature Reduction
Cycle Removed Feature F-Measure Modeled Features

0 - 0.1197 1-14

1 1 0.1197 2-14

2 4 0.1277 2,3,5-14

3 10 0.1352 2,3,5-9,11-14

4 12 0.1404 2,3,5-9,11,13,14

5 8 0.1343 2,3,5-7,9,11,13,14

6 2 0.1079 3,5-7,9,11,13,14

7 5 0.0800 3,6,7,9,11,13,14

8 3 0.0873 6,7,9,11,13,14

9 14 0.0588 6,7,9,11,13

10 11 0.0561 6,7,9,13

11 9 0.0435 6,7,13

12 6 0.0317 7,13

13 7 0.0429 13

14 13 - -

Using the raw scores saved from calculating the F-Measure in our feature

reduction we can combine it with the raw scores from the combined binary set using a

convex combination to identify a new model. Since many of the F-Measures are zero

when using a majority of binary data, we use the maximum F-Measure for each convex

combination to compare them. Table 22 is the maximum result from the combination,

along with the results when the data is only binary and only numeric data. Note that F-

Measure for the numeric data is 0.1667 which is larger than the 0.1404 stated in Table 21.

This is due to changing the cut off rate in a ROC curve, and since we do that for the

binary and final results, we did it for the numeric data for comparison.

 92

Figure 26: ROC Curves with F-Measure for Final Results

Table 22: Results from Convex Combination
Ratio of Binary to Numeric F-Measure

1 to 0 (Full Binary) 0.1537

0.07 to 0.93 (Combination) 0.2538

0 to 1 (Full Numeric) 0.1667

Now that we have the results we can use all the parameters to test our new

validation set. Table 23 is a summary of all our model parameters. We use the numbered

features associated with each data set. The spread for the combined retained binary

features is 0.0603 and the spread for the retained numeric features is 0.1247. The convex

 93

combination contains 0.07 of the binary results and 0.93 of the numeric results. The cut

off indicates that if the gold farmer model results with a value greater than 0.05 then the

observation is from a gold farmer, while a value less that 0.05 is not a gold farmer. The

resulting confusion matrix and maximum F-Measure is below in Table 24.

Table 23: Model Parameters
Parameter Value

XB1 2-4,6,7,9,14

XB2 24

XB3 1

XB4 1-5,7,10-12

XB5 2,3,5,6,8,10-20,22-24

XR 2,3,5-9,11,13,14

Binary Spread 0.0603

Numeric Spread 0.1247

Convex Combination 0.0700

Cut off 0.0500

Table 24: Final Model Confusion Matrix
Sim True

 Non-Gold Farmer Gold Farmer
Non-Gold Farmer 20971 158

Gold Farmer 190 58
F-Measure (NGF) 0.9918
F-Measure (GF) 0.2500

ACA 0.9837

 94

Looking at the parameters from Table 23 we can see that the convex combination

is very small. This indicates that the binary model does not have much of an effect on the

results, but there is an effect. On first look the results in Table 24 may not appear to be

significant. We see that of the 248 gold farmers identified by the model, only 58 were

actual gold farmers and only a small number of gold farmers are identified, 58 out of 216.

Another way to interpret the results is to consider that without the model, someone

looking for gold farmers would need to investigate 21,377 avatars where only one percent

of them are actual gold farmers. With the model, they could narrow the investigation

down to 248 avatars where 23% of them are actual gold farmers. It also follows that

since we identified 27% of the gold farmers with our reduced set of original features,

more gold farmers could be identified by originally starting with more features. Table 25

shows the names of all the retained features from the final model indicated in Table 23.

The listing of these features can be used by game experts to gain insight into the

behaviors of gold farmers, since they may be able to provide rationale as to why each

feature would or would not be associated with a gold farmer.

Since we only used a small portion of the data, we were able to go back into the

original dataset and resample validation sets. Using the one percent data as a training set

and the parameters identified in Table 23 we processed both validations sets. We

standardized each validation observation using the means and standard deviations used to

standardize the training set, just as we would to test new observations. Table 26 and

Table 27 are the resulting confusion matrices and performance measures from the

500/500 and 5% validation sets, respectively.

 95

Table 25: Retained Features
Feature Name

File
Name

Feature
Label

Data
Type

Feature Name
File

Name
Feature
Label

Data
Type

AGE SECONDS XR 11 Numeric NORTHERN AFRICA XB5 11 Binary

ARTISAN CLASS ID 0 XB3 1 Binary NORTHERN ASIA XB5 12 Binary

BARBARIAN XB1 2 Binary NORTHERN EUROPE XB5 13 Binary

CENTRAL AFRICA XB5 2 Binary NPC KILLS XR 6 Numeric

CENTRAL AMERICA XB5 3 Binary OGRE XB1 14 Binary

CENTRAL EUROPE XB5 5 Binary PACIFIC XB5 14 Binary

CHAR LEVEL XR 3 Numeric PERSONAL MONEY XR 2 Numeric

CHARACTER GENDER XB4 1 Binary PVP XB4 10 Binary

CHARACTER HAS A BIO XB4 4 Binary PVP DEATHS XR 13 Numeric

CHARACTER HAS A
GUILD

XB4 2 Binary
PVP TOTAL KILLS

XR 14 Numeric

CHARACTER HAS A
LAST NAME

XB4 3 Binary SOUTH AMERICA XB5 15 Binary

CITY ALIGNMENT 0 XB4 5 Binary SOUTH ASIA XB5 16 Binary

CITY ALIGNMENT 2 XB4 7 Binary SOUTH EAST ASIA XB5 17 Binary

CURRENT QUESTS
ACTIVE

XR 9 Numeric SOUTH EAST EUROPE XB5 18 Binary

DARKELF XB1 3 Binary SOUTH WEST ASIA XB5 19 Binary

DWARF XB1 4 Binary SOUTH WEST EUROPE XB5 20 Binary

EAST ASIA XB5 6 Binary SOUTHERN EUROPE XB5 22 Binary

EASTER EUROPE XB5 8 Binary TOTAL DEATHS XR 7 Numeric

FEMALE PLAYER XB4 12 Binary TOTAL QUESTS
COMPLETED

XR 8 Numeric

FROGLOK XB1 6 Binary TRADESKILL LEVEL XR 5 Numeric

GNOME XB1 7 Binary WEST INDIES XB5 23 Binary

HALFLING XB1 9 Binary WESTERN
AFRICA/EUROPE

XB5 24 Binary

MALE PLAYER XB4 11 Binary WIZARD XB2 24 Binary

NORTH AMERICA XB5 10 Binary

When compared to Table 24 the results from Table 27 are similar, while the

results from Table 26 are significantly different for F-Measure (NGF) and ACA. This

would indicate that category ratio does play a significant part in the evaluation of the

data. An interesting note is how F-Measure (GF) is relatively the same for all three data

 96

sets when compared to the changes of F-Measure (NGF) and ACA. F-Measure (GF) is

reduced by 0.0810 from Table 24 to Table 27 and is reduced by 0.0642 from Table 26 to

Table 27. This is relatively small when compared to the 0.3030 increase in F-Measure

(NGF) and the 0.4229 increase in ACA from Table 26 to Table 27. With such a small

change, we should be able to claim they are similar. We hypothesize that this is because

the model was optimized for this performance measure, and therefore we are confident it

will maintain the accuracy of this performance measure with a change in the category

ratio and number of observations.

Table 26: 500/500 Model Resulting Confusion Matrix
Sim True

 Non-Gold Farmer Gold Farmer
Non-Gold Farmer 500 434

Gold Farmer 0 66
F-Measure (NGF) 0.6974
F-Measure (GF) 0.2332

ACA 0.5660

Table 27: 5% Model Resulting Confusion Matrix
Sim True

 Non-Gold Farmer Gold Farmer
Non-Gold Farmer 105568 955

Gold Farmer 235 121
F-Measure (NGF) 0.9944
F-Measure (GF) 0.1690

ACA 0.9889

 97

6.4. Conclusion

The primary focus of our research is to identify players in massive multiplayer

online games. This research is of interest to both game companies and the government.

Game companies can use player classification techniques two ways. One is to identify

players and relate them to their activities, so they can improve game play for specified

player types. Second they could also identify deviant players such as gold farmers. This

would help them identify these deviant players faster and improve game play for all other

players. The government wishes to use player classification techniques similar to game

companies looking for deviant players. The government is looking for criminal activities

such as money laundering and terrorism. These criminal activities are easily hidden

within a game, but focus on actions that are not representative of normal game play.

In this chapter, we attempt to classify gold farmers from data obtained from the

Sony’s online game EverQuest II. We chose this example to apply our new spread

finding, feature selection, and hybrid GRNN techniques for two reasons. First we have

access to a real MMOG database to apply our techniques to. Therefore, we can develop

our techniques using real world applications. Second, we do not know of any actual

money launderers or terrorists within the dataset, but we do have a list of accounts

canceled due to gold farming techniques. Since gold farming is a deviant behavior and

the proportion of gold farmers to non-gold farmers is very small, it is similar to our

application of identifying criminal activity.

The analysis was successful even though the F-Measure values were relatively

low, due at least in part to the reduced data set required for this study. The number of

available features to use is extremely large, but our computers and software limited us to

 98

a greatly reduced feature set. We primarily focused on data relating to an avatar’s

standard information, since it was readily available and allowed us to keep the number of

features to a level where our computers could process them without running out of

memory. The data used does not contain information about game play such as

experience per hour, time played per session, and interaction with other players to name a

few. A game developer within EverQuest II would have better understanding of the data

and could collect many more features to start with than we did.

In addition to the large number of available features, we also had an extremely

large number of usable observations, of which we only used one percent. A computer

programmer with access to a distributed computing resource could take our techniques

and parallelize them to run on multiple machines. This would ease memory restrictions

and speed up the computation time, thus allowing the use of more features and

observations, while increasing the accuracy of the entire model.

Another potential reason for the low number of classified gold farmers is that we

only know which accounts were de-activated due to gold farming. We do not know if

any of the remaining observations are actual gold farmers that have not been identified.

This could account for some of the observations that were classified as gold farmers but

were part of the non-gold farmer category. Further investigation into these observations

would be needed to verify this.

GRNNs are readily adaptable to follow the changing of the gold farmer activities.

By adding recent observations and eliminating the older observations the model can be

updated to represent player behaviors as they change over time. The model can be

 99

adjusted either by just changing the training set or by rebuilding the whole model to

identify changes in feature significance.

 100

VII. Summary Research Contributions and Future Research

This chapter summarizes contributions made to the fields of Applied Statistics

and Simulation, presented in this document. It also provides areas for future study related

to the research presented in this document.

7.1. Research Contributions

This section summarizes contributions to the fields of Applied Statistics and

Simulation presented in this document.

7.1.1. Feature Selection Using Generalized Regression Neural Networks

Our research developed a feature selection technique based on Generalized

Regression Neural Networks (GRNNs). It is a multi-step technique that initially clusters

the training data to identify multiple centroids within each category of the training data.

Then it sums the gradient magnitudes of test points along vectors between the centroids

of differing categories. Using these summed gradient magnitudes, it identifies the feature

with the smallest magnitude and removes this feature from the training set. The

technique repeats this loop, starting with clustering the reduced training set, until all

features are removed. After all the features are removed a determination is made based

on the performance of each reduced set to determine the desired feature set.

Our feature selection technique can be used with both binary and numeric data.

Since this technique is based on and leverages techniques particular to the GRNNs, it is a

better alternative to use when modeling with GRNNs than other techniques such as factor

 101

analysis, primary component analysis or signal to noise ratio using Feed forward Neural

Networks. This is because our feature selection technique discriminates between features

using the same methodology the GRNN uses to discriminate between categories.

7.1.2. Hybrid Generalized Regression Neural Network

Our research developed a hybrid GRNN technique that leverages Parzen Window

distributions for kernels that are best suited to a specific data type. Our technique

separates features by data type then analyzes them with separate GRNNs using the

associated kernel for each data type. Then using a convex combination of the separate

GRNNs, it combines the multiple results into a single model output.

A standard GRNN leverages only one kernel for the entire data set. Using a

single kernel for models with multiple data types could be less accurate since it applies a

kernel that performs optimally for some features, but may not be optimal for the rest of

the features. Therefore, using multiple kernels that are each tailored to a specified data

type will result in more accurate models.

To combine the separate models back to a single model we find the optimal

convex combination of the two models. This convex combination represents a weighting

measure that indicates the value of the data types relative to each other in the final model.

An additional benefit to using our hybrid method comes from reducing a large

GRNN into two or more smaller GRNNs which can be easily parallelized to reduce

overall processing time. The smaller individual GRNNs may also avoid hardware and/or

software limitations faced by a very large combined GRNN and allow for including more

observations and features in the individual GRNNs, leading to more accurate models. All

 102

these things make our hybrid GRNN ideal for modeling data sets with multiple data

types.

7.1.3. Spread Estimation Technique for Large Data Sets

Our research developed a spread heuristic to be used with extremely large data

sets. It clusters the data for each category and identifies each observation within a

cluster. Then it calculates and assigns the distance between each observation and the

furthest observation within each cluster. These assigned distances are then averaged and

the result is divided by two. This value provides an estimated spread with the intent it

should allow the distribution developed from the training data to cover each category.

Our spread estimation technique is much faster than searching multiple spreads

for large data sets, but not as fast as most spread finding heuristics. It is more accurate

than most spread finding heuristics and can be deemed an adequate tradeoff of speed and

accuracy for large data sets. Without our spread estimation technique, our model would

either take an excessive amount of time to complete using an exhaustive search, or

produce less accurate results using available spread finding heuristics.

This spread finding technique adds another method to the small number of

techniques available. It also fills part of the gap between heuristics and exhaustive search

by identifying an optimal value with a performance measure that is better than the

standard heuristics, but not as good as an exhaustive search. The speed of calculating our

spread runs faster than exhaustive search, but slower than the standard heuristic.

Therefore, our spread finding technique is a balance of accuracy and speed.

 103

7.1.4. Develop Framework to Classify Players by Predetermined Categories
Using Information Obtained Through In-Game Behaviors

As a part of our original proposal we developed a framework to classify Massive

Multiplayer Online Game (MMOG) players using information obtained through in-game

behaviors. Using our spread estimation, feature selection, and hybrid GRNN techniques

we were able to identify gold farmers in Sony’s online game EverQuest II. Our results

were promising given the difficulty of the classification process, primarily the extremely

unbalanced data set with a small number of observations from the class of interest. As a

screening tool our method identifies a significantly reduced set of avatars and associated

players with a much improved probability of containing a number of players displaying

deviant behaviors. With further efforts at improving computing efficiencies to allow

inclusion of additional features and observations with our framework, we expect even

better results.

Future investigations into the EverQuest II data are required to improve the

accuracy of identifying players through their in-game behaviors. An idea presented

earlier in the document is to identify better features for our model. We do not fully

understand or know all the data available in the EverQuest II data and further research

into the data could identify features that yield better results with our technique. Also,

research in the reliance on training and test proportions between the categories may yield

better results.

7.2. Recommendations for Future Work

This section reviews unfinished avenues of research we began but were not able

to complete and other recommendations for further work.

 104

7.2.1. Develop Tool to Identify In-Game Player Associations and Movement

Patterns

In our research proposal, we envisioned a series of three related contributions

starting with our player classification discussed in Section 7.1.4. The next step is to

develop a methodology to identify in-game player associations and generate network

representations of these associations. This would lead to more features that could be

incorporated into our model to identify players in MMOGs using in-game behaviors. It

would also aid in quantifying the impact deviant players have on other players.

Additional insight on player classification and associations can be gained from

movement patterns. This would require development of a method to track individual

avatars and document their activities. Such a method could lead to developing more

features to incorporate into our model for player classification. It could also be used as a

verification step in a tool for classifying specific categories of players. After identifying

a specified player with a model, it could track them and verify that a player is the type of

player specified. This research would need to encompass identifying different methods

of how to track cooperative play.

7.2.2. Feature Selection Improvements Using Generalized Regression Neural

Networks

While working on our feature selection technique we discovered a computational

issue. Using the minimum summed magnitude of gradients to determine a feature to

remove could result in ties, primarily with value of zero. We did see this occur numerous

times with binary data. Our solution was to eliminate all features with a summed

 105

gradient magnitude of zero, but better solutions may exist. We suggest research into this

to determine the best course of action when these ties occur.

7.2.3. Processing Improvements for Hybrid Generalized Regression Neural

Networks

While working with the hybrid GRNN, we noted that using large training sets

requires a significant amount of computer processing time. It has been noted that

clustering and using the centroids to reduce the number of training observations speeds

up processing a GRNN, but also distorts the balance between categories. A possible

solution to this is to weight each centroid by the number of observations it represents.

Further research into such an approach or others to improve processing speeds and

effectiveness in describing the data is warranted.

Suggested earlier in this document, future work in parallelization of the code

would lead to faster run times. Or hybrid GRNN approach is constructed such that

several sections could be parallelized and run on multiple computers at the same time.

Two examples of this are when the model is broken by data types and during the

evaluation of the GRNNs where the observations to be evaluated could be separated to

run on multiple nodes. Parallelization would drastically speed up the performance and

also could reduce the reliance on heuristics which would increase the accuracy of the

results.

7.2.4. Spread Estimation for Large Data Sets

Two ideas worth investigating relating to work on our spread estimation heuristic

are to use our heuristic as bounds for exhaustive search and a start for a gradient search.

The basic idea would be to identify a confidence interval about our spread estimation

 106

heuristic. The confidence interval would then become the new search interval for the

exhaustive method. Further research would be required to identify if there is a way to

modify the estimated spread to create bounds for an exhaustive search and the value this

would add.

Also, further research would be required to use the spread as a starting point for a

gradient search. Since the spread values are from a linear series, it may be possible to use

a spread heuristic to identify an initial spread in a gradient search. Performance measures

of the initial spread and two more spreads, a small amount larger and a small amount

smaller, could be evaluated. These three performance values could then be fitted to a

second degree polynomial where the gradient would be used to direct a search toward a

maximum or minimum performance measure. A step could be taken in the direction

toward the optimal performance measure to identify a new spread. This new spread

could be used to identify another gradient direction or could identify the optimal

performance measure.

7.2.5. Further Develop Framework to Classify Players by Predetermined
Categories Using Information Obtained Through Observed Behaviors

Our technique can readily be applied to develop a tool for classifying terrorists

among online game players by their in-game behaviors. There is some evidence that

terrorists have been identified within MMOGs. Using our techniques and classified

information about terrorist activities identified within MMOGs a model for classifying

terrorists can be created in a similar fashion as we did for gold farmers. This model can

then be used to identify other terrorists within these MMOGs. Once identified by our

 107

approach, these terrorists can then be tracked to identify their activities, learn more about

their groups, and intervene to protect national interests.

A further extension of our technique can be applied to real life observations, such

as video monitored systems. Paths, dress, and actions could all be features extracted

from a monitored system similar to MMOGs. Then, using our modeling technique, we

could identify situations or people of interest in the monitored system.

 108

Appendix A: List of Acronyms

ACA Apparent Classification Accuracy
AMBR Adaptive Memory-Based Reasoning
ANN Artificial Neural Network
APER Apparent Error Rate
ATPM Action Transition Probability Matrix
CMDS Classical Multidimensional Scaling
DTW Dynamic Time Warping

F2T2EA Find, Fix, Track, Target, Execute, and Assess
FA Factor Analysis
FFNN Feed Forward Neural Network
GRNN Generalized Regression Neural Network
HMM Hidden Markov Models
KLE Klullback Liebler Entropy
MMOG Massive Multiplayer Online Game
MUD Multi User Domain
PCA Primary Component Analysis
PNN Probabilistic Neural Network
RBFNN Radial Basis Function Neural Network
ROC Receiver Operating Characteristic
SNR Signal to Noise Ratio
SOM Self-Organizing Map
TCP Transmission Control Protocol
VBS2 Virtual Battlespace 2
WoW World of Warcraft
PC Personal Computer

 109

Appendix B: Binary Receiver Operating Characteristic Curves for EQ2 Analysis

Figure 27: ROC Curves for EQ2-B1 feature reduction sets

 110

Figure 28: ROC Curves for EQ2-B2 feature reduction sets

 111

Figure 29: ROC Curves for EQ2-B3 feature reduction sets

 112

0.9

o.e

Q.l 0.7

(;j
0::: 0.6

.~
:~ 0.5

~
<LI 0.4

~
0.3

0.2

01

~~~0~.1~~0.~2 --~0~.3--~0~~~~~~. --~o~ .• ---o~.,~~0.78 --~0~.9~~ 
False Positive Rate 

0.9 

o.e 

Q.l 0.7 

(;j 
0::: 0.6 

.~ 
:~ 0.5 

~ 
(1.1 0.4 

~ 
0.3 

0.2 

01 

~~~0~.1~~0.~2 --~0~ .• ---o~~~~~~. --~o~ .• ---o~.,~~o.~. --~0~.9--_J 
False Positive Rate

0.9

0.8

Q.l 0.7

(;j
0::: 0.6

.~
:~ 0.5

~
(1.1 0.4

~
0.3

0.2

01

~~~0~.1~~0.~2 --~0~ .• ---o~~~~~~. --~o~ .• ---o~.,~~o.~. --~0~.9--_J 
False Positive Rate 

0.9 

o.e 

Q.l 0.7 

(;j 
0::: 0.6 

.~ 
:~ 0.5 

~ 
<LI 0.4 

~ 
0.3 

0.2 

01 

~~~0~.1~~0.~2 --~0~ .• --~o~~~~~~. --~o~ .• ---0~.,~~0.78 --~0~.9~~ 
False Positive Rate

0.9

o.e

Q.l 0.7

(;j
0::: 0.6

.~
:~ 0.5

~
(1.1 0.4

~
0.3

0.2

01

~~~0~.1~~0.~2 --~0~ .• ---o~~~~~~. --~o~ .• ---o~.,~~o.~. --~0~.9--_J 
False Positive Rate 

0.9 

0.8 

Q.l 0.7 

(;j 
0::: 0.6 

.~ 
:~ 0.5 

~ 
(1.1 0.4 

~ 
0.3 

0.2 

01 

0.1 0.2 0.3 0.4 0 .5 0 .6 0.7 0.8 0.9 

False Positive Rate 



 

 113

o~f 
o• 

.. 07 .. 07 .. .. 
a: o• a: 01 

f / ~ 00 1 00 // 0 
0.. 0.. 

~ o• ~ o• 
1- O> 1- O> 

02 
- 0.0843 

02 

0 1 / (Cycle 7( 0 1 (cyclesl 

00 --' 00 
L 

0 1 0 2 O> o• 0 0 06 0.7 0.0 o• 0 1 02 O> o• 0 0 0 0 07 00 ... 
False Positive Rate False Positive Rate 

,/ ./ 
oe //"'' oe /"'' 

~,.·· ,,/ 
01 /' 0 1 _,., 

., 07 

.I'J-..... 

., 07 
// 

~/ 

/ 10 /'' 10 
a: 01 a: 01 

.~ 

/ ~ OS ·~ OS 

1 0.. ti. 
~ o• ~ o• ... .. 

l 
... .. 

0.0697 00697 
02 02· 

01 (Cycle9, o•r [CYcle 10) 

01 02 O> o• •• •• 07 0.0 ... 1 o. 01 02 O> o• •• •• 07 00 ... 
False Positive Rate False Positive Rate 



 

 114

 

Figure 30: ROC Curves for EQ2-B4 feature reduction sets 
 



 

 115

 

Figure 31: ROC Curves for EQ2-B5 feature reduction sets 
 



 

 116

Appendix C:  Features Reduced vs. F-Measure for EQ2 Analysis 
 

Table 28: Numeric Feature Reduction 
Cycle Removed Feature F-Measure Modeled Features 

0 - 0.1197 1-14 

1 1 0.1197 2-14 

2 4 0.1277 2,3,5-14 

3 10 0.1352 2,3,5-9,11-14 

4 12 0.1404 2,3,5-9,11,13,14 

5 8 0.1343 2,3,5-7,9,11,13,14 

6 2 0.1079 3,5-7,9,11,13,14 

7 5 0.0800 3,6,7,9,11,13,14 

8 3 0.0873 6,7,9,11,13,14 

9 14 0.0588 6,7,9,11,13 

10 11 0.0559 6,7,9,13 

11 9 0.0436 6,7,13 

12 6 0.0324 7,13 

13 7 0.0429 13 

14 13 - - 

 

 

Figure 32: Plot of Retained features vs. F-Measure for Numeric Data Set 
 



 

 117

Table 29: Binary Feature Reduction EQ2-B1 
Cycle Removed Feature F-Measure Modeled Features 

0 - 0.0406 1-16 

1 8 0.0406 1-7,9-16 

2 1,5,10,11,12,13,15,16 0.0406 2-4,6,7,9,14 

3 3,4,6,7,9 0.0215 2,14 

4 14 0.0215 2 

5 2 - - 

 

 

Figure 33: Plot of Retained features vs. F-Measure for EQ2-1 Binary Data Set 
 

Table 30: Binary Feature Reduction EQ2-B2 
Cycle Removed Feature F-Measure Modeled Features 

0 - 0.0551 1-41 

1 26 0.0551 1-25,27-41 

2 1,2,5,6,9,10,11,13,14,
16,17,18,19,20,22,23,
25,27,28,31,33,34,36,

37,38,39 0.0535 

3,4,7,8,12,15,21,24, 
29,30,32,35,40,41 

3 3,4,7,8,12,15,21,29,32,
35,41 0.0535 

24,30,40 

4 40 0.0535 24,30 

5 30 0.0535 24 

6 24 - - 

 



 

 118

 

Figure 34: Plot of Retained features vs. F-Measure for EQ2-2 Binary Data Set 
 

Table 31: Binary Feature Reduction EQ2-B3 
Cycle Removed Feature F-Measure Modeled Features 

0 - 0.0548 1-14 

1 3,4,5,6,7,8,9,10,12 0.0548 1,2,11,13,14 

2 11, 13, 14 0.0548 1,2 

3 2 0.0548 1 

4 1 - - 

 

 

Figure 35: Plot of Retained features vs. F-Measure for EQ2-3 Binary Data Set 
 



 

 119

Table 32: Binary Feature Reduction EQ2-B4 
Cycle Removed Feature F-Measure Modeled Features 

0 - 0.0919 1-13 

1 6 0.0918 1-5,7-13 

2 13 0.0918 1-5,7-12 

3 8 0.0913 1-5,7,9-12 

4 9 0.0927 1-5,7,10-12 

5 3 0.0866 1,2,4,5,7,10-12 

6 4 0.0843 1,2,5,7,10-12 

7 12 0.0831 1,2,5,7,10,11 

8 11 0.0697 1,2,5,7,10 

9 7 0.0697 1,2,5,10 

10 2 0.0531 1,5,10 

11 10 0.0328 1,5 

12 5 0.0282 1 

13 1 - - 

 

 

Figure 36: Plot of Retained features vs. F-Measure for EQ2-4 Binary Data Set 
 



 

 120

Table 33: Binary Feature Reduction EQ2-B5 
Cycle Removed Feature F-Measure Modeled Features 

0 - 0.1485 1-25 

1 1,4,7,9,21,25 0.1485 2,3,5,6,8,10-20,22-24 

2 2,3,5,6,8,11,12, 
13,14,15,16,17, 
18,19,20,22,23 0.03445 

10,24 

3 24 0.0210 10 

4 10 - - 

 

 

Figure 37: Plot of Retained features vs. F-Measure for EQ2-5 Binary Data Set 
 



 

 121

Bibliography 

 

Ahmad, Muhammad Aurangzeb, Brian Keegan, Jaideep Srivastava, Dmitri Williams, and Noshir 
Contractor, “Mining for Gold Farmers: Automatic Detection of Deviant Players in 
MMOGs”, 2009 International Conference on Computational Science and Engineering, 
vol4, 2009, pp 340-345 

Balicer, Ran D., “Modeling Infectious Diseases Dissemination Through Online Role-Playing 
Games”, Epidemiology, vol 18 numb 2 march 2007 pp260-261 

Bartle, Richard, “Hearts, Clubs, Diamonds, Spades: Players Who Suit MUDs,” The Journal of 
Virtual Environments, Vol. 1, No. 1. (1996) 

Bauer, Kenneth W. 786 Class notes (year 2008) 

Bauer, Kenneth W., Stephen G. Alsing, and Kelly A. Green, “Feature Screening Using Signal-
To-Noise Ratios”, Neurocomputing, vol 31, 2000, pp29-44 

BBC News, “Billions Stolen in Online Robbery”, (3 July 2009) 2 Sept 2009, 
http://news.bbc.co.uk/2/hi/technology/8132547.stm  

Blizzard Entertainment, “WORLD OF WARCRAFT® SUBSCRIBER BASE REACHES 12 
MILLION WORLDWIDE”, (7 October 2010) 18 October 2010, 
http://us.blizzard.com/en-us/company/press/pressreleases.html?101007  

Breast Cancer Wisconsin (Original) Data Set, UCI Machine learning repository, 15 July 1992 
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original) 

Chen, Kuan-Ta and Li-Wen Hong, “User Identification based on Game-Play Activity Patterns”, 
NetGames, Sept 19-20, 2007 

Chen, Kuan-Ta, Jhih-Wei Jiang, Polly Huang, Hao-Hua Chu, Chin-Laung Lei, and Wen-Chin 
Chen, “Identifying MMORPG Bots: A Traffic Analysis Approach”, EURASIP Journal on 
Advances in Signal Processing, vol 2009 

Duda, Richard O., Peter E. Hart, and David G. Stork, Pattern Classification, New York: Wiley, 
2001, pp 580 

Flietstra, T.D., Bauer, K.W., and Kharoufeh, J.P., “Integrated Feature and Architecture Selection 
for Radial Basis Neural Networks”, International Journal of Smart Engineering System 
Design, 2003, 5: 507-516 

Game Entertainment Europe, “Games”, 4 Sept 2008, http://www.ge-eu.com/games.html  



 

 122

GamerDNA, Bartle Test of Gamer Psychology, 26 Oct 2009, 
http://www.gamerdna.com/quizzes/bartle-test-of-gamer-psychology 

Keegan, Brian, Muhammad Aurangzeb Ahmed, Dmitri Williams, Jaideep Srivastava, and Noshir 
Contractor, “Dark Gold: Statistical Properties of Clandestine Networks in Massively 
Multiplayer Online Games”, IEEE International Conference on Social Computing, 
August 2010, pp 201-208 

Kohavi, Ron, ” A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model 
Selection”, The International Joint Conference on Artificial Intelligence (IJCAI), 1995 

Kuncheva, Ludmila I., Combining Pattern Classifiers: Methods and Algorithms, John Wiley & 
Sons, INC. 2004 

Laurens, Peter, Richard F. Paige, Phillip J. Brooke, and Howard Chivers, “A Novel Approach to 
the Detection of Cheating in Multiplayer Online Games”, 12th IEEE International 
Conference on Engineering Complex Computer Systems, 2007 

Leuski, Anto and Victor Lavrenko, “Tracking Dragon-Hunters with Language Models”, ACM 
conference on Information and Knowledge Management, Nov 5-11, 2006 

Lin, Holin and Chuen-Tsai Sun, “The ‘White-eyed’ Player Culture: Grief Play and Construction 
of Deviance in MMORPGs”, Proceedings of DiGRA 2005 Conference: Changing Views 
– Worlds in Play 

Loeffelholz, Bernard, Earl Bednar, Kenneth W. Bauer, “Predicting NBA Games Using Neural 
Networks”, Journal of Quantitative Analysis in Sports, vol 5: Iss 1, Article 7, 2009 

Matsumoto, Yoshitaka, and Ruck Thawonmas, “MMOG Player Classification Using Hidden 
Markov Models”, Lecture Notes in Computer Science: Entertainment Computing – ICEC 
2004, Springer Berlin/Heidelberg, 2004, pp429-434 

Ohsawa, Yukio, Nels E. Benson, and Masahiko Yachida, “KeyGraph: Automatic Indexing by 
Co-occurrence Graph based on Building Construction Metaphor,” Proceedings, IEEE 
International Forum on Research and Technology Advances in Digital Libraries, 1998, 
pp12-18 

Pelleg, Dan and Andrew Moore, “X-means: Extending K-means with Efficient Estimation of the 
Number of Clusters”, Proceedings of the Seventeenth International Conference on 
Machine Learning, June 29-July 2 2000, pp 727-734 

Ruck, Dennis W., Steven K. Rogers, and Matthew Kabrisky, “Feature Selection Using a 
Multilayer Perceptron”, Journal of Neural Network Computing, vol 2, numb 2, 1990, pp 
40-48 

Sargent, Daniel J., “Comparison of Artificial Neural Networks with Other Statistical 
Approaches”, Cancer, vol 91, issue S8, 15 Apr 2001, pp1589-1697 



 

 123

Specht, Donald F., “A General Regression Neural Network”, IEEE Transactions on Neural 
Networks, vol 2, no 6, Nov 1991, pp568-576 

Specht, Donald F., “Probabilistic Neural Networks”, Neural Networks, Vol 3, 1990, pp109-118 

Steiner, Peter, “On The Internet, Nobody Knows You’re A Dog”, The New Yorker, vol 69, no 20 
5 July 1993, pp 61 

Stepwisefit, MathWorks, 2010, http://www.mathworks.com/help/toolbox/stats/stepwisefit.html 

Thawonmas, Ruck and Ji-Young Ho, “Classification of Online Players Using Action Transition 
Probability and Kullback Leibler Entropy”, Journal of Advanced Computational 
Intelligence and Intelligent Informatics, vol 11, no 3, 2007a 

Thawonmas, Ruck and Katsuyoshi Hata, “Aggregation of Action Symbol Sub-sequences for 
Discovery of Online-game Player Characteristics Using KeyGraph”, Lecture Notes in 
Computer Science: Entertainment Computing – ICEC 2005, Springer Berlin/Heidelberg, 
2005a, pp126-135 

Thawonmas, Ruck and Keita Iizuka, “Haar Wavelets for Online-Game Player Classification with 
Dynamic Time Warping”, Journal of Advanced Computational Intelligence and 
Intelligent Informatics, vol 12, no 2, 2007b 

Thawonmas, Ruck and Keita Iizuka, “Visualization of Online-Game Players Based on Their 
Action Behaviors”, International Journal of Computer Games Technology, Vol 2008, ID 
906931, 2008 

Thawonmas, Ruck, and Yoshitaka Matsumoto, “Hidden Markov Models with Feature Mapping: 
An Application to MMOG Player Classification”, Proc. 6th International Conference on 
Computer Games: Artificial Intelligence and Mobile Systems (CGAIMS’2005), 
Louisville, Kentucky, USA pp. 95-101, Jul. 2005b 

Thawonmas, Ruck, Ji-Young Ho, and Yoshitaka Matsumoto, “User Type Identification in 
Virtual Worlds”, Springer Series on Agent Based Social Systems: Agent-Based Modeling 
Meets Gaming Simulation, Springer Japan, 2005c, pp79-88 

Thawonmas, Ruck, Masayasu Hirano, and Masayoshi Kurashige, “Cellular Automata and 
Hilditch Thinning for Extraction of User Paths in Online Games”, Proceedings of 5th 
ACM SIGCOMM Workshop on Network and System Support for Games, 2006 

Thawonmas, Ruck, Masayoshi Kurashige, and Kuan-Ta Chen, “Detection of Landmarks for 
Clustering of Online-Game Players”, The International Journal of Virtual Reality, 2007c, 
6(3) pp11-16 

The City Paper, “NY Man Pleads Guilty to Trafficking Credit Card Numbers”, (30 Apr 2008) 8 
Sept 2009, http://www.nashvillecitypaper.com/content/city-news/ny-man-pleads-guilty-
trafficking-credit-card-numbers 



 

 124

Their, David, “World of Warcraft Shines Light on Terror Tactics”, Wired, (20 Mar 2008) 12 Feb 
2009, http://www.wired.com/gaming/virtualworlds/news/2008/03/wow_terror 

Tveit, Amund, Oyvind Rein, Jorgen V. Iversen, Mihhail Matskin, “Scalable Agent-Based 
Simulation of Players in Massively Muliplayer Online Games”, Eighth Scandinavian 
conference on Artificial Intelligence, 2003, pp153 – 162 

Van Rijsbergen, C. J., Information Retrieval, (1979) 18 October 2010, 
http://www.dcs.gla.ac.uk/Keith/Preface.html 

Wasserman, Philip D, Neural Computing: theory and Practice, New York: Van Nostrand 
Reinhold, 1989, pp7 

William H. Wolberg and O.L. Mangasarian: "Multisurface method pattern separation for medical 
diagnosis applied to breast cytology", Proceedings of the National Academy of Sciences, 
U.S.A., Volume 87, December 1990, pp 9193-9196. 

Yan, Jianxin Jeff and Hyun-Jin Choi, “Security Issues in Online Games”, The Electronic 
Library: International Journal of the Application of Technology in Information 
Environments, vol 20, no 2, 2002 

 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

03-08-2011 
2. REPORT TYPE  

Ph.D. Dissertation 
3. DATES COVERED (From – To) 

Sep 2007 – Aug 2011 
4.  TITLE AND SUBTITLE 
 
 IDENTIFICATION AND CLASSIFICATION OF PLAYER TYPES IN MASSIVE 
MULTIPLAYER ONLINE GAMES USING AVATAR BEHAVIOR 
  
 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Bednar, Earl M., Major, USAF 
 
 
 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Street, Building 642 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/DS/ENS/11S-01 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 HQ AF/A9I 
    ATTN:  Tim Booher 
 1570 Air Force Pentagon                                DSN: 260-2161 
 Washington DC 20330-1570                          e-mail: Timothy.Booher@pentagon.af.mil 
     

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
HQ AF/A9I 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES  
 

14. ABSTRACT  
The purpose of our research is to develop an improved methodology for classifying players (identifying deviant players such as terrorists) through multivariate analysis 
of data from avatar characteristics and behaviors in massive multiplayer online games (MMOGs). To build our classification models, we developed three significant 
enhancements to the standard Generalized Regression Neural Networks (GRNN) modeling method.  The first enhancement is a feature selection technique based on 
GRNNs, allowing us to tailor our feature set to be best modeled by GRNNs.   The second enhancement is a hybrid GRNN which allows each feature to be modeled by 
a GRNN tailored to its data type.  The third enhancement is a spread estimation technique for large data sets that is faster than exhaustive searches, yet more accurate 
than a standard heuristic.  We applied our new techniques to a set of data from the MMOG, Everquest II, to identify deviant players (‘gold farmers’).  The identification 
of gold farmers is similar to labeling terrorists in that the ratio of gold farmer to standard player is extremely small, and the in-game behaviors for a gold farmer have 
detectable differences from a standard player.  Our results were promising given the difficulty of the classification process, primarily the extremely unbalanced data set 
with a small number of observations from the class of interest.  As a screening tool our method identifies a significantly reduced set of avatars and associated players 
with a much improved probability of containing a number of players displaying deviant behaviors.  With further efforts at improving computing efficiencies to allow 
inclusion of additional features and observations with our framework, we expect even better results.  
15. SUBJECT TERMS 
 Modeling and Simulation, Multivariate Analysis, Neural Networks, 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

136 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. John O. Miller (ENS) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4326; e-mail:  John.Miller@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18  

 


